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Abstract
We establish the decidability of the isomorphism problem for a broad class of generalized
Baumslag—Solitar (GBS) groups — specifically, those with one quasi-conjugacy class and full-
support gaps. To achieve this, we introduce a family of invariants that fully characterize the
isomorphism classes within this family.

1 Introduction

The isomorphism problem, formulated by Dehn around the turn of the 20th century, is a
fundamental decision problem in group theory. It asks whether there exists an algorithm that,
given two groups defined by finite presentations, decides whether or not the groups are isomorphic.
Although this problem is undecidable in general, it remains of fundamental interest to solve it for
specific, relevant classes of groups.

One of the most important decidability results of the isomorphism problem was established in
the context of 3-manifolds and relies on the fact that (fundamental groups of) closed orientable 3-
manifolds have a unique decomposition as fundamental groups of graphs of groups with abelian edge
groups. These ideas led to a rich and fruitful theory, known as the JSJ decomposition for finitely
presented groups [RS97, (DS99, [FP0G, (GL17]. As in the case of 3-manifolds, one-ended hyperbolic
groups have a unique JSJ-decomposition (even though the construction is more delicate, based
on the tree of cylinders, see [GLI1I]), and this fact is again central for solving the isomorphism
problem for hyperbolic groups [Sel95, [DG11l [DT19).

In contrast, for other families of groups, the JSJ decomposition is far from being unique and can
exhibit significantly greater flexibility: not necessarily in the vertex groups of the decomposition,
but at least in the way in which they are glued together. In [For02], Forester explained how one can
go from one decomposition of a group to any other using a certain set of moves, called elementary
deformations. In this way, given a splitting T' of a group G (i.e. an action of G on a tree T),
the deformation space is the family of all splittings of G that are related to T" by elementary



deformations. Understanding the structure of the infinite deformation spaces represents one of
the main obstructions to solving the isomorphism problem (and to describing the automorphism
group) for large families of groups. In this regard, the most basic and important example is the
class of generalized Baumslag-Solitar groups.

A generalized Baumslag-Solitar group (GBS) is the fundamental group of a graph of
groups where all vertex groups and edge groups are infinite cyclic. They can be characterized as
the only groups of cohomological dimension 2 containing an infinite cyclic subgroup that intersects
all of its conjugates, see [Kro90]. As the name suggests, GBS groups generalize the classical
Baumslag—Solitar groups, which are a rich source of (counter)examples in geometric group theory.
They also play a key role in the study of one-relator groups: Gersten conjectured that the presence
of a GBS as a subgroup is the only obstruction to hyperbolicity in this class. Although GBS groups
were classified up to quasi-isometry nearly 25 years ago (see [FM98, [WhyO1]), their classification
up to isomorphism remains a longstanding open problem.

In [ACRK254)] the authors initiated a systematic study of the isomorphism problem for GBS
groups, see references therein for previously known results. They proved that, for any two iso-
morphic GBS groups, there exists an explicit (computable) bound on the number of vertices and
edges in the graph of groups decompositions appearing along a sequence of moves that realizes
the isomorphism. More precisely, they showed that for any GBS group, one can algorithmically
compute a fully reduced representative, i.e. an isomorphic GBS group with the minimal number
of vertices and edges in its isomorphism class. Moreover, for any pair of fully reduced isomorphic
GBS groups, there exists a sequence of new moves that realizes the isomorphism while preserving
the number of vertices and edges. As a consequence, the minimal number of vertices and edges
becomes a computable invariant of the isomorphism class.

In the current paper, we continue this study, introduce several new isomorphism invariants
for GBS groups, and prove that these invariants suffice to fully determine the isomorphism class
within a large and natural subclass of GBS groups: those with one quasi-conjugacy class and full-
support gaps, see Definitions [2.10] and The main result of this paper is summarized in the
following

Theorem A (Corollary [5.27). There is an algorithm that, given two GBS graphs (I',v), (A, ¢)
with one qc-class and full-support gaps, decides whether or not the corresponding GBS groups are
isomorphic.

The new isomorphism invariants - the quasi-conjugacy classes and their linear invariants,
the set of rigid vectors, the assignment map, and the limit angles - play a crucial role in
understanding the algebraic structure of GBS groups and in addressing the isomorphism problem.
We next discuss these invariants.

Linear invariants and independence of quasi-conjugacy classes. Each GBS group is strat-
ified by the set of quasi-conjugacy classes of its elliptic elements, see Definition [2.10, which, as its
name indicates, generalizes the notion of conjugacy classes. The relevant set of quasi-conjugacy
classes (those containing at least one edge in the affine representation) forms a finite partially
ordered set and provides a natural notion of complexity for a GBS group.

Each quasi-conjugacy class can be described by a finite, algorithmically computable set of data:
the set of minimal regions, the quasi-conjugacy support, and the linear algebra (Definition .
It follows that the quasi-conjugacy classes, as well as the number of edges that belong to each of
them, are computable isomorphism invariants. Moreover, each quasi-conjugacy class (along with
its set of edges) admits a partition into a collection of conjugacy classes, each associated with a
subset of edges. We show that this partition, the set of conjugacy classes and their corresponding
set of edges, is also a computable isomorphism invariant. We refer to these invariants collectively
as the linear invariants of the quasi-conjugacy class.

Theorem B (Corollary . Let (T, ), (TV,¢') be two GBS graphs and suppose that there is
a sequence of slides, swaps, connections going from one to the other (preserving the number of
vertices). Then (T',4), (IV,4") have the same quasi-conjugacy classes and linear invariants.



We next examine the interaction between different quasi-conjugacy classes in the context of
the isomorphism problem, and show that, to a significant extent, these classes can be analyzed
independently. More precisely, we categorize slide moves into two types: internal slides, which
involve edges within the same quasi-conjugacy class, and external slides, which involve edges from
different classes. We prove that performing external slides requires only to know the linear in-
variants of the corresponding quasi-conjugacy class. As a consequence, we deduce that edges in
distinct quasi-conjugacy classes interact (at most) through external slides.

Theorem C (Theorem[4.9). Let (I',v), (I", ') be two GBS graphs with a bijection V(I') = V(I").
Then the following are equivalent:

1. There is a sequence of slides, swaps, connections going from (I',¢) to (IV,¢) inducing the
given bijection.

2. For every quasi-conjugacy class Q, there is a sequence of swaps, connections, internal slides,
external slides (Lemma [4.8)) — each of them involving only edges in Q — going from the
configuration in (T, 1) to the configuration in (I”,4").

As an application of Theorem Theorem |[C| we recover the main results of [For06] and [Dud17],
and resolve the isomorphism problem for a concrete example that remained open in [Wan25].

Invariants for GBSs with one quasi-conjugacy class and full-support gaps As discussed
above, the poset of quasi-conjugacy classes provides a measure of the complexity of a GBS group.
However, Theorem [C] shows that the general case can be reduced to the case of a single quasi-
conjugacy class considered relative to the linear invariants of the other classes involved in external
slides. We address this central case by focusing on GBS groups with one quasi-conjugacy class,
that is, GBS groups in which all edges belong to the same quasi-conjugacy class.

We will impose an additional condition on the GBS groups under consideration, namely, that
they have full-support gaps (see Deﬁnition. This can be viewed as a “genericity” condition: a
“random” element of N is expected to have all components strictly positive. Informally, the benefit
of this assumption is that the conditions for applying a connection move reduce to membership in
some positive orthant of N”; in the general case, by contrast, these conditions are constrained to
a positive orthant of a potentially proper subvariety of N™.

For GBS groups with one quasi-conjugacy class and full-support gaps for which the number of
edges is strictly greater than the number of minimal points, we prove that the linear invariants
completely determine the isomorphism class. Within this subclass, we define a (coarse) normal
form and prove that two such groups are isomorphic if and only if their normal forms are isomorphic
(see Proposition. The normal form is constructed by maximizing the interaction among edges,
and we show that any GBS graph satisfying these conditions can be algorithmically transformed
into this “maximal interaction” normal form.

When the number of edges equals the number of minimal points, we need to introduce two new
invariants: the multi-set of rigid edges and the assignment map.

Some edges in GBS graphs are rigid, meaning they remain fixed under all allowed moves and
thus constitute an isomorphism invariant. When a quasi-conjugacy class contains more than one
edge, however, the definition of rigidity has to be slightly relaxed: rigid edges permit a very
limited form of modification and can, in some cases, be concealed within cycles. This motivates
the introduction of rigid vectors (see Definition , which formalize the naive notion of rigidity.

The non-rigid edges define a tuple of vectors in an abelian group, and performing moves on the
GBS graph, changes the tuple of vectors by Nielsen transformations. Thus we obtain the second
isomorphism invariant, the Nielsen equivalence class of the tuple of vectors obtained from the
non-rigid edges. A key step in our argument is proving the converse: if two configurations yield
Nielsen equivalent tuples of vectors, then there is a sequence of moves going from one to another,
i.e. the associated GBS groups are isomorphic (see Appendix.

Under the assumption that the number of edges and minimal points is the same, there is a
natural bijection between these two sets. While even permutations of the tuple of edges result in
isomorphic GBS groups, odd permutations do not. To account for this, we introduce the assignment
map, which records the positions of the rigid and non-rigid edges relative to the minimal points
and allows us to track the sign of the permutation.



Finally, there is an exceptional case, when the number of edges interacting with each other is
exactly two. In this setting, the results from Appendix |B| do not apply, as they require at least
three interacting vectors. Instead, a surprising and previously unexplored invariant emerges: the
limit angle. The analysis of limit angles reveals a rich and intricate dynamical structure, which we
examine in detail in a separate paper [ACRK25b].

Remark. Nielsen equivalence in abelian groups is discussed in Appendix [A] Suppose that we are
given an abelian group A with minimal number of generators k. Then every two k'-tuples of
generators for A are Nielsen equivalent if &/ > k + 1. If we are given two k-tuples of generators
for A, then we can compute the determinant of the change of basis from one k-tuple to the other:
this must be considered modulo some number d = d(A). The two k-tuples are Nielsen equivalent
if and only if the determinant is 1 modulo d. This determinant is thus an isomorphism invariant
for GBSs in some cases, and one can produce examples of GBSs which are non-isomorphic exactly
because they have different determinants (see Examples [5.28] [5.29] and [5.30]).
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2 GBS graphs and quasi-conjugacy classes

In this section, we establish the notation used throughout the paper. We review the concepts
of conjugacy and quasi-conjugacy classes, and show how they can be described by means of a finite
amount of data. We also provide explicit algorithms to compute them, and examples to illustrate
them.

2.1 Graphs of groups

We consider graphs as combinatorial objects, following the notation of [Ser77]. A graph is a
quadruple T' = (V| E,~, 1) consisting of a set V' = V(T') of vertices, a set E = E(T") of edges, a map
“: F — FE called reverse and a map ¢ : E — V called initial verter; we require that, for every
edge e € E, we have € # e and € = e. For an edge e € F, we denote with 7(e) = «(€) the terminal
vertex of e. A path in a graph I', with initial verter v € V(I') and terminal vertez v' € V(I), is
a sequence o = (eq,...,ep) of edges ey,...,e, € E(T) for some integer ¢ > 0, with the conditions
t(er) =v and 7(es) = v" and 7(e;) = t(e41) for i =1,...,¢ — 1. The terminal and initial vertices
will often be referred to as endpoints. A graph is connected if for every couple of vertices, there is
a path going from one to the other. For a connected graph I', we define its rank rkI" € NU {+o0}

as the rank of its fundamental group (which is a free group).

Definition 2.1. A graph of groups is a quadruple

Gg= (Fv {G’U}’UEV(F)7 {Ge}eeE(F)a {ql}e}eGE(F))

consisting of a connected graph I', a group G,, for each vertex v € V(I'), a group G. for every edge
e € E(T') with the condition G, = G, and an injective homomorphism 1 : Ge — G () for every
edge e € E(T).

Let G = (I, {Gy}vev(r), {Gelecrm)s {¥e}eerm)) be a graph of groups. Define the universal
group FG(G) as the quotient of the free product (*,ecv(r)Gv) * F(E(I)) by the relations

e=e! Ve(g) e =e-te(g)

for e € E(T') and g € G..
Define the fundamental group 71 (G, v) of a graph of group G with basepoint v € V(I") to be
the subgroup of FG(G) of the elements that can be represented by words such that, when going



along the word, we read a path in the graph I' from ¥ to v. The fundamental group m1(G,7)
does not depend on the chosen basepoint v, up to isomorphism. Given an element g inside a
vertex group G,, we can take a path (ey,...,es) from ¥ to v: we define the conjugacy class
[9] :=le1...ewg€r...€1] € m1(G,V), and notice that this does not depend on the chosen path.

2.2 Generalized Baumslag-Solitar groups

Definition 2.2. A GBS graph of groups is a finite graph of groups

G = (T, {Gu}vevr) {Geleerm), {Ye}eerm))
such that each vertex group and each edge group is Z.

A Generalized Baumslag-Solitar group is a group G isomorphic to the fundamental group
of some GBS graph of groups.

Definition 2.3. A GBS graph is a couple (I',¢) where T is a finite graph and ¢ : E(T') — Z\ {0}
s a function.

Given a GBS graph of groups G = (I', {G }vev(r), {Getec e {¥e }ecp(r)), the map ¥, : G, —
G+ (e) is an injective homomorphism v : Z — Z, and thus coincides with multiplication by a unique
non-zero integer ¥(e) € Z \ {0}. We define the GBS graph associated to G as (T',v) associating
to each edge e the factor ¢(e) characterizing the homomorphism 1., see Figure|l| Giving a GBS
graph of groups is equivalent to giving the corresponding GBS graph. In fact, the numbers on the
edges are sufficient to reconstruct the injective homomorphisms and thus the graph of groups.

1

24

Figure 1: In the figure we can see a GBS graph (I',v) with two vertices v,u and three edges
e1,ez,e3 (and their reverses). The edge e; goes from v to v and has ¥ (&) = 4 and ¥(e;) = 12.
The edge e goes from v to u and has ¥ (e3) = ¥(e2) = 3. The edge e3 goes from u to u and has

Y(es) =1 and ¥(e3) = 24.

Let G be a GBS graph of groups and let (T, ) be the corresponding GBS graph. The universal
group FG(G) has a presentation with generators V(I') U E(T"), the generator v € V(I") representing
the element 1 in Z = G,. The relations are given by € = e~ and u¥®e = ev¥(®) for every edge
e € E(I") with ¢(e) = and 7(e) = v.

2.3 Reduced affine representation of a GBS graph
Definition 2.4. For a GBS graph (T',v), define its set of primes

P(T,¢) :={r € N prime :r | ¢(e) for some e € E(T)}.
Given a GBS graph (T',¢), consider the finitely generated abelian group

A=z/220 P L
reP(T,y)

We denote with 0 € A the neutral element. For an element a = (ag,a, : r € P(I',¢)) € A (with
ap € Z/2Z and a, € Z for r € P(T',1)), we denote a > 0 if a, > 0 for all » € P(T',); notice that
we are not requiring any condition on ag. We define the positive cone AT := {a € A : a > 0}.

Definition 2.5. Let (I',¢) be a GBS graph. Define its (reduced) affine representation to be
the graph A = A(T', ) given by:



1. V(A) = V() x At is the disjoint union of copies of A, one for each vertex of T.
2. E(A) = E(T) is the same set of edges as ', and with the same reverse map.

3. For an edge e € E(A) we write the unique factorization ¢(e) = (=1)* [[,cpr 4 7" and we
define the terminal vertez 75(e) = (tr(e), (a0, ar, . ..)), see Figure 2|

For a vertex v € V(') we denote A} := {v} x AT the corresponding copy of A™.

If A contains an edge going from p to ¢, then we denote p —— ¢. If A contains edges from p;

to ¢; for i = 1,...,m, then we denote

1 —q1

Pm dm
This does not mean that p; —— q1,. .., Pm —— ¢m are all the edges of A, but only that in a certain
situation we are focusing on those edges. If we are focusing on a specific copy A" of A, for some
v € V(T'), and we have edges (v,a;) — (v,b;) for i = 1,...,m, then we say that A} contains
edges

a; — b1

a,, — b,,

omitting the vertex v.

Figure 2: The affine representation A of the GBS graph (I',¢) of Figure The set of vertices
consists of two copies A;f and A of the positive affine cone AT, associated to the two vertices
v and u respectively. The edge e; going from v to u was labeled with (¢(€1),v(e1)) = (4,12) =
(223°,2231), and thus now it goes from the point (2,0) in A} to the point (2,1) in A;. Similarly
for eo and es.

2.4 Support and control of vectors
The following notions for elements of A will be widely used along the paper.
Definition 2.6. For x € A define its support as the set
supp(x) := {r € P(I,9) : 2, # 0}.
Remark 2.7. Note that we omit the Z/2Z component from the definition of support.

Definition 2.8. Let a,b,w € At. We say that a, w controls b if any of the following equivalent
conditions holds:

1. We have a<b < a+ kw for some k € N.

2. We have b —a > 0 and supp(b — a) C supp(w).



2.5 Affine paths and conjugacy classes

Let (I',9) be a GBS graph and let A be its affine representation. Given a vertex p = (v,a) €
V(A) and an element w € AT, we define the vertex p+ w := (v,a+w) € V(A). For two vertices
p,p’ € V(A) we denote p’ > p if p’ = p+ w for some w € A™; in particular this implies that both
p,p’ belong to the same A7 for some v € V().

Definition 2.9. An affine path in A, with initial vertex p € V(A) and terminal vertex p’ €
V(A), is a sequence (e1,...,ep) of edges e1,...,ep € E(A) for some £ > 0, such that there exist
wi,...,We € AT satisfying the conditions t(e1) + w1 = p and T(e¢) + we = p' and 7(e;) + w; =
tleip1) +Wigr fori=1,...,0—1.

The elements wy,...,wy are called translation coefficients of the path; if they exist, then
they are uniquely determined by the path and by the endpoints, and they can be computed
algorithmically. They mean that an edge e € E(A) connecting p to ¢ allows us also to travel from
p+w to g+ w for every w € AT,

Definition 2.10. Let p,q € V(A).

1. We denote p ~ q, and we say that p,q are conjugate, if there is an affine path going from
p to q.

2. We denote p <. q if p < ¢ for some ¢’ ~. q.
3. We denote p ~qc q, and we say that p,q are quasi-conjugate, if p <. q and ¢ = p.

The relation ~ is an equivalence relations on the set V(A). The relation =<, is a pre-order
on V(A), and ~ is the equivalence relation induced by the pre-order. Note that if p ~. p’ then
p+w~cp +wforall we AT. Similarly, if p ~qc p’ then p+w ~ge p' +w for all w € AT,

2.6 Minimal points, quasi-conjugacy support, linear algebra

We now show how the conjugacy and quasi-conjugacy classes can be completely described by
means of three pieces of data: the minimal points, the quasi-conjugacy support and the linear
algebra.

Definition 2.11. Let (T',4¢) be a GBS graph and let p be a vertex of its affine representation A.

1. Define the minimal points

ming.(p) = {qg € V(A) : ¢ ~qc p and for all ¢ ~qc p with ¢ < q we have ¢ < ¢'}.
2. Define the quasi-conjugacy support
suppqe(p) = [ J{supp(u) : w € A* and p+u ~ge p} S P(T,9).

3. Define the linear algebra

linge(p) ={re A:r=w—w for some w,w' € AT such that p+w ~c p+ w’ ~ p}.

Lemma 2.12. The set ming(p) is finite.

Proof. Fix a vertex u € V(I'): since I" has finitely many vertices, it suffices to prove that ming.(p)N
A’ is finite. Consider a set of variables {x;};cp(r,y) and consider the ring of polynomials C[z; :
i € P(I',9)]. For each (u,q) ~gc p consider the monomial 24 = [[z} € C[z;,...]. Consider
the ideal I = (2% : (u,q) ~gc p) € Clay,...] generated by these monomials. We have that I
is a monomial ideal, i.e. it contains a polynomial P if and only if it contains all the monomial
with non-zero coefficients of P. By Hilbert’s basis theorem, I must be finitely generated, and thus
we can find we find finitely many qi,...q¢ € AT such that I = (z%,...,2%). Tt follows that
ming.(p) N A} C {(u,q1),..., (u,q¢)} must be finite, as desired. O



Lemma 2.13. Ifp ~qc g, then supp,.(p) = suppy.(q)-
Proof. If p+u ~gc p for some u € A", then ¢+ u ~ge p+ U ~qe P ~qe ¢- O
Lemma 2.14. For allp € V(A) there is w € At such that p+w ~c p and supp(w) = supp,.(p)-

Proof. Realize the quasi-conjugacy support as a finite union supp,.(p) = supp(u1)U. .. Usupp(uy)
for u; € AT with p 4+ u; ~qc p. By the definition of quasi-conjugacy, we can find v, € AT such
that p + u; + v; ~c p. Now set w = (u; +v1) + -+ + (us + v¢) and the conclusion follows. O

Lemma 2.15. We have that ling(p) is a subgroup of A.

Proof. Suppose that we are given r,s € ling(p). Thus we haver = w — w’ and s = u — u’ for
w,w ouu € AT with p ~. p+W ~. p+W ~c p+u~c p+u'. In particular we have that
p+wH+u~p+w +un~ep+w +u and (w+u) — (w +u’) =r+s. Thusr +s € ling(p).
The conclusion follows. O

Lemma 2.16 (Equivalent characterization of linear algebra). For p € V(A) and r € A, we have
that r € lingc(p) if and only it satisfies the following two conditions:

1. A contains vertices (u,a) ~¢ (u,a+r) ~ge p for someu € V(I') and a € A with a,a+r > 0.

2. supp(r) C supp.(p)-

Proof. The definition of ling.(p) obviously implies the two conditions. Suppose now that supp(r) C
supp,.(p) and there are vertices (u,a) ~c (u,a+ 1) ~qc p. Since supp(r) C supp.(p), we can
find w € AT such that p+w ~¢ p and w +r > 0. Since p ~¢. (u,a) we can find p’ ~. p with
(u,a) < p'; in particular we also have p+w ~¢ p' +w and p+ (W —r) ~. p' + (w —r). But since
(u,a) < p’ + w, the condition (u,a) ~. (u,a+ r) implies p’ + w ~. p +w + r. Therefore we have
p+wWerep + W p +(W—r)~p+ (w—r). The conclusion follows. O

Remark 2.17. Condition [2] of Lemma [2.16] can not be omitted. In fact, one might try to define
the linear algebra of a point p as the set of elements r € A satisfying Condition [1| of Lemma [2.16
However, in general this definition gives a set which is different from the set ling.(p) of Definition
and which might not be a subgroup.

It follows that if p ~¢c ¢ then ming.(p) = ming.(q) and supp.(p) = supp,.(¢) and ling(p) =
ling.(q); thus, for a quasi-conjugacy class @, the objects ming.(Q), supp,.(Q),ling.(Q) are well-
defined. The following Proposition [2.18| explains how the minimal points and the quasi-conjugacy
support give a complete description of a quasi-conjugacy class. The subsequent Proposition
explains how the linear algebra gives a complete description of the conjugacy classes contained in
the quasi-conjugacy class.

Proposition 2.18. Let (I',¢) be a GBS graph and let p be a vertex of its affine representation A.
Then the following are equivalent:

1. q ~qc P
2. ¢=m+w for some m € ming(p) and for some w € At with supp(w) C Supp (p)-
Proof. Immediate from the definitions. O

Proposition 2.19. Let (I',¢) be a GBS graph and let p be a vertex of its affine representation A.
Then we have the following:

1. For all w,w’ € AT with supp(w),supp(w’) C supp.(p), we have that

p—|—WNcP+W/<:>W—W/€hnqc(p)'

2. There is a natural inclusion of subgroups ling.(p) < Z/2Z & Z5WPPac(P) < A .



3. There is a bijection between the following two sets:
(i) The set of conjugacy classes contained in the quasi-conjugacy class of p.
(ii) The quotient (/27 @ Z5"PPacP)) /lin,.(p).

Remark 2.20. The bijection in Item [3] of Proposition [2.19is not canonical. It is canonical only up
to translations in (Z/27 @ Z**PPa<(P)) /lin,.(p).

Proof. Ttem [I] follows from Lemma [2.16] and Item [] is trivial.

Take a conjugacy class Q contained in the quasi-conjugacy class of p. This means that we can
find ¢ € Q such that ¢ = p + w for some w € AT with supp(w) C SUppPy.(p). By Lemma [2.16] a
different choice of ¢ € @ will change w by adding an element of ling.(p). Thus from @ we obtain
a well-defined coset w + lingc(p). This defines a map from the set of conjugacy classes contained
in the quasi-conjugacy class of p to (Z/2Z @® Z5"PPa=(P)) /lin . (p).

To prove surjectivity, take x € A with supp(x) C supp,.(p) and consider the coset x + ling.(p).
Since supp(x) C supp, (p), we can find w € AT such that p+w ~ p and x+w > 0. In particular
X + lingc(p) = (x + w) + ling(p) and this coset is realized by the conjugacy class of p +x + w.

To prove injectivity, suppose that we are given w,w’ € AT with supp(w),supp(w’) C
suppy.(p), and such that p + w and p + w’ define the same coset w + ling.(p) = W' + ling.(p).
But then w — w’ € ling.(p) = ling.(p) and we find u,u’ € A" such that w — w' = u — u’ and
p+u~c p+u’ ~¢ p. This implies that p+w ~, p+w-+u' =p+w' +u ~; p+w’, and injectivity
follows. O

2.7 The graph of families and the modular map
Let (T',4) be a GBS graph and let A be its affine representation.

Definition 2.21. We say that p,q € V(A) are in the same family if p ~q q and they are of the
form p = (v,a) and q = (v, b) with supp(b — a) C supp,.(p), for some v € V(T') and a,b € A*.

Being in the same family is an equivalence relation on V(A); an equivalence class is called
family of vertices. Every family of vertices is contained in a quasi-conjugacy class (by definition),
and it always contains at least one minimal point of the quasi-conjugacy class (by Proposition.
In particular, each quasi-conjugacy class is partitioned into finitely many families.

Definition 2.22. Define the graph of families F(Q) of a quasi-conjugacy class Q as follows:
1. V(F(Q)) is the finite set of families contained in the quasi-conjugacy class Q.

2. E(F(Q)) is the set of triples (F,e,F') € V(F(Q)) x E(A) x V(F(Q)) such that there is
w € A" with L(e)+w € F and 7(e) + w € F'.

3. We set (F,e,F') = (F',e,F) and «((F,e,F')) = F and 7((F,e, F')) = F'.

Lemma 2.23. Suppose that the vertices of e € E(A) lie in Q. Then there are unique families
F,F' € V(F(Q)) such that (F,e,F') € E(F(Q)), and they are the families containing t(e) and
7(e) respectively.

Proof. 1f for some w € AT the vertex (e) + w lies in @, then by the definition of quasi-conjugacy
support, we have supp(w) C supp,.(Q), and by the definition of family, we have that «(e) + w lies
in the same family as ¢(e). Similarly for 7(e). O

If the vertices of e € E(A) do not lie in @, then the graph of families can contain several edges
of the form (F,e, F'), corresponding to different translates of e. However, it will always contain
finitely many edges, as there are finitely many possible triples in V(F(Q)) x E(A) x V(F(Q)). Note
also that the graph of families is connected: for every two families in the same quasi-conjugacy
class, there must be an affine path connecting two points in the two families.

Definition 2.24. Define the modular map q : E(T') — A given by q(e) = b — a where tp(e) =
(v,a) and TA(e) = (u,b) for some v,u € V(T') and a,b € AT,



Note that ¢(€) = —q¢(e). In particular, we obtain a homomorphism ¢ : 71 (I') — A, which we
call the modular homomorphism.

Let @ be a quasi-conjugacy class and let F(Q) be the corresponding graph of families. Then
we have a modular map qg : E(F(Q)) — A defined by go((F,e, F')) = g(e). Thus we can define
a homomorphism gg : 71 (F(Q)) — A, which we call modular homomorphism of @ .

Proposition 2.25. Let Q be a quasi-conjugacy class and let F(Q) be the corresponding graph of
families. Then the image of qq : M (F(Q)) = A is exactly ling.(Q).

Proof. Fix p € @ and take r € ling.(p). Then there is an affine path (ei,...,e,), with translation
coefficients w1, ..., wy, going from t(e1) + wy; = p+w to 7(e;) + wy, = p+ w’ with w,w' € AT
and w —w=r. Foralli=1,...,£—1 we have that 7(e;) + w; = t(e;4+1) + W;41 must lie in some
family F; C Q. Thus we obtain a path ¢ = ((F1,e1, F»), ..., (Fi—1,e¢, F1)) in F(Q). Tt is easy to
check that gg(o) =w —w =r.

Conversely, suppose that we are given a closed path o = ((F1,e1,F»),...,(Fi—1,es, F1)) in
F(Q), for some families F; C Q with ¢ = 1,...,¢. Then we can find w; € A" such that ¢(e;) +
w; € F; and 7(e;) + w; € Fy41. It is easy to see that we can adjust w; in such a way that
7(e;) + w; = t(e;41) + Wiq1, obtaining an affine path (eq,...,ep) from t(e1) + wy to 7(eg) + wy.
In particular, we can check that gg(o) = wy — wy € lingc(p) as t(e1) + wy and 7(eg) + wy lie in
the same family F7.

This proves that the image of the homomorphism gg : 71 (F(Q)) = A is exactly ling(p), as
desired. O

Remark 2.26. Applying the modular map ¢ to a single edge is not usually very meaningful. If the
two endpoints of e are different vertices of I', then the difference b — a does not make much sense,
as we are comparing powers of generators of different vertices. It only makes sense when applied
to paths that begin and terminate at the same vertex.

However, if we are interested in studying a certain quasi-conjugacy class @), then we need to
refine the modular homomorphism even more. For example, if the two endpoints of e are in the
same vertex of I', but lie in different families of (), then the difference b — a still needs to be
ignored. This is because it will give some linear algebra which is “external” to the quasi-conjugacy
class Q. This is why we consider the modular homomorphism g¢ : m (F(Q)) — A instead.

For example, in [ACRK25a] we describe a procedure to make a GBS graph into a one-vertex
GBS graph. The procedure will add a lot of loops to 71 (T"), adding noise to the modular homo-
morphism ¢ : m (I') — A. However, the procedure will preserve the graphs of families and the
modular homomorphisms associated with the quasi-conjugacy classes. Considering the graph of
families makes the noise invisible to us.

2.8 Algorithmic computation of conjugacy classes

All the concepts discussed in the previous Section [2.6] can be computed algorithmically, as we
now explain.

Proposition 2.27. There is an algorithm that, given a GBS graph (T',v) and a vertex p of its
affine representation A, computes the following:

1. ming(p).

2. supp.(p)-

3. For every m € ming(p), an affine path from m to a point > p.

4. An affine path from p to p+w for some w € AT with supp(w) = Supp . (p)-

Description of the algorithm. In order to run the algorithm, it is not restrictive to ignore the
component Z/27Z, just remember to add it to all minimal points at the end of the procedure. If
the GBS graph (T, ) has negative labels, just change them with their absolute values. So here we
work with A = ZP(T¥) | In each moment, the algorithm keeps in memory

1. A finite set of vertices M C V(A).
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2. A finite set of components S C P(T", ).
3. For every m € M, an affine path o, from m to p+x,, for some x,,, € AT with supp(x,,) C S.
4. An affine path o from p to p + z for some z € AT with supp(z) = S.

CLEAN UP ROUTINE. For every m,m’ € M distinct we check whether m’ > m. If so, we
write m’ = m +r for some r € AT and we perform the following operations:

1. We change S into S U supp(r)
2. We change the path o into 09G,, 0, for some sufficiently large natural number d.
3. We remove m’ from M, and we forget the path o, .

We reiterate until we find no couple m, m’ € M distinct with m’ > m.

MAIN ALGORITHM. We initialize M = {p} with o, trivial. We initialize S = ( with o
trivial. Then we repeat the following iteration until the two sets M, S do not remain unchanged.
Iteration: We write a list of all the couples (m,e) € M x E(A). For each couple (m,e), we look
for the minimum w € A™ such that «(e) + w = m + s for some s € A" with supp(s) C S. If it
does not exist, then we just ignore that couple, and go on examining the other couples (m,e). If
it exists, then it is unique, and we proceed as follows:

1. Suppose that there is no m’ € M such that 7(e) +w > m’. In this case we change M into
MU {7(e) +w} and we set 0, (¢)4w = €0r,. Then we run the clean up routine, and we start
a new iteration (i.e. we write again the list of all couples (m,e) € M x E(A) and so on).

2. Suppose that there is m’ € M such that 7(e) + w = m/ +r with r € A" and supp(r) € S.
Then we change S into S Usupp(s’), and we change the path ¢ into 0%, €0,/ for some big
enough natural number d. Then we run the clean up routine, and we start a new iteration
(i.e. we write again the list of all couples (m,e) € M x E(A) and so on).

3. Suppose that there is m’ € M such that 7(e) + w > m/, and for each such m’ we have that
7(e) + w = m/ 4+ r with supp(r) C S. Then we just ignore that couple, and go on examining
the other couples (m,e).

When we run a full iteration without changing the sets M, .S, then we quit the cycle. The algorithm
terminates and outputs ming.(p) = M, supp,.(p) = S, the affine paths o, for m € M, the affine
path o. O

Proof that the algorithm works. Observe that we can add elements to the set S only finitely many
times (since S is a subset of a finite set). As in the proof of Lemma we can consider the ring
of polynomials C[z; : i € P(T',)] and the ideal (x™ : (u,m) € M). This ideal increases strictly
every time that the algorithm adds a new element to M since rings of polynomial are Noetherian,
this can happen only finitely many times. This proves that we can change the set M only finitely
many times, and thus that the algorithm terminates.

It is easy to prove by induction that, in each moment while running the algorithm, M is
contained in the quasi-conjugacy class of p, S C suppqc(p)7 the paths o, for m € M satisfy the
property of Item |3 the path o satisfies the property of Item In particular, when during the
algorithm we substitute o with 0%,,e0,,/, we are always able to (algorithmically) find an integer
d such that the substitution gives another affine path starting at p.

When the algorithm terminates, consider the set of vertices M*° = {m + w : m € M and
w € At with supp(w) C S} and observe that M+ is contained in the quasi-conjugacy class of
p. But since no couple (m,e) changes the sets M, S, we have that no translate of any edge e can
be used to move from a point in M5 to a point outside M+S. This proves that M1 is closed
under quasi-conjugacy, and thus M 1% is the quasi-conjugacy class of p. Since every time we add
a vertex to M we also run the clean up routine, this implies that M = min,.(p). This also implies
that S = suppqc(p). It follows that the output of the algorithm is correct. O

Proposition 2.28. There is an algorithm that, given a GBS graph (I';%) and a vertex p of its
affine representation A, computes the following:
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1. A finite set of generators for ling.(p).
2. For each generator r, an affine path oy satisfying condition [I] of Lemma [2.16]

Proof. Let (@ be the quasi-conjugacy class of p. By Proposition we can algorithmically
compute supp,.(Q) and the finite set M = ming.(Q). We can also algorithmically compute the
graph of families 7(Q) (see Definition[2.22)), as V/(F(Q)) is a computable quotient of the finite set
and the set of edges is a computable subset of the finite set V(F(Q)) x E(T") x V(F(Q)). Moreover,
we can give an algorithmic description of the modular homomorphism ¢q : 71 (F(Q)) — A: given
a loop 6 in F(Q), we can algorithmically compute go(6) € A. In particular we can compute
a set of generators for m1(F(Q)) and their images through the homomorphism gg. According to
Proposition[2.25] the images are the desired set of generators for ling(Q) and the loops in 1 (F(Q))
are the corresponding affine paths (for some suitable translation coefficients), as desired. O

Corollary 2.29. There is an algorithm that, given a GBS graph (I',v) and two vertices p,q of its
affine representation A, does the following:

o Decides whether p ~qyc q, and in case they are, computes two affine paths, one from each of
them to a vertex above the other.

e Decides whether p ~. q, and in case they are, computes an affine path from one to the other.

Remark 2.30. Notice that two points are conjugate if and only if the corresponding elliptic elements
in the GBS group are conjugate. Therefore, Corollary [2.:29] provides a self-contained algorithm to
solve the conjugacy problem for elliptic elements in a GBS group. For hyperbolic elements the
conjugacy problem follows essentially from Britton’s lemma. Note that the conjugacy problem for
GBS groups was proven to be decidable in [Loc92] [Beel5], see also [Weil6] for complexity bounds.

2.9 Examples

We show a couple of examples, to help the reader understand how conjugacy classes and quasi-
conjugacy classes work. In the examples along the paper, for simplicity of notation, we will only
deal with GBS graphs (T, ¢) with positive labels. For this reason we will use A = ZP ) omitting
the Z/27Z summand.

Ezample 2.31. Later in the paper (see Example |4.22)), we will describe the isomorphism problem
for this example. Consider the GBS graph (I',¢) with a single vertex v and nine edges, with labels
as in Figure 3] We call g the generator of G,, = Z. Since the labels only use the prime factors 2
and 3, we have that P(I',v) = {2,3} and we use A = Z2. The number 223" will be associated to
the element (a,b) € AT for a,b € N.

Consider the point p = (v,(1,3)) corresponding to the element 92133 =g The quasi-
conjugacy class of p consists of only two points (v, (1, 3)), (v, (3,2)), corresponding to the elements
g°*, g™ respectively, see Figure 4| In this case supp..(p) = § and ming(p) is the set of the two
points of the quasi-conjugacy class, which is also a conjugacy class. This means that g™ for n > 1
is conjugate to g°* if and only if n = 54, 72. In this case ling.(p) = 0.

54

Consider the point p = (v, (4,1)) corresponding to the element ¢23' = ¢. The quasi-

conjugacy class of p consists of the points (v, (k,1)) for k > 4, corresponding to the elements
¢%"3 for k > 4. In this case suppy.(p) = {2} and ming.(p) = {(v, (4,1))}. This quasi-conjugacy
class is partitioned into two conjugacy classes, depending on the parity of k. This means that g"
for n > 1 is conjugate to g*8 if and only if n = 2% -3 for k > 4 even. In this case ling(p) = ((2,0)).
Consider the point p = (v, (2,3)) corresponding to the element g'%®. In this case Suppy.(p) =
{2,3} and ming.(p) = {(2,3),(4,2)} and ling(p) = ((2,0),(0,1)). The quasi-conjugacy class is
partitioned into two conjugacy classes, as (Z%"PPac(P))/ lingc(p) = Z/2Z which has cardinality 2.

12



A

Figure 3: On the left a GBS graph (T',4) with one vertex and nine edges. On the right the
corresponding affine representation A. On the horizontal axis the number of factors 2 and on the
vertical axis the number of factors 3.

Quasi-conjugacy class of (v, (1, 3)) Quasi-conjugacy class of (v, (4,0))
T~ B o B © B o © o @
% o o] % [c] o] [o] o]
o @e/a : Q/

Quasi-conjugacy class of (v, (4, 1)) Quasi-conjugacy class of (v, (2, 3))

Figure 4: In the figure we see four copies of the same affine representation A associated with
Example 2:31] In each copy, we put in evidence a different quasi-conjugacy class. We can see
the quasi-conjugacy class of (1,3) (top left), of (4,0) (top right), of (4,1) (bottom left), of (2, 3)
(bottom right). To distinguish different conjugacy classes inside a common quasi-conjugacy class,
we mark the vertices with different symbols (circles, squares).

Ezample 2.32. This example is taken from [Wan25|]. Later in the paper (see Example , we
will describe the isomorphism problem for this example. Consider the GBS graph with a single
vertex v and four edges, with labels as in Figure The prime numbers of this GBS graph are
P(T,4) = {2,3,5,7}. The number 2¢3°5°7? will be associated to the element (a,b,c,d) € A% for
a,b,c,d € N. We call A the affine representation of (T',)): this consists of a single copy A} of AT
containing four edges

3,0,0,0
1,1,0,0
0,1,0,1

(
(
(
(1,0,0,1

—_ — — T
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Consider the point p = (v, (3,0,0,0)). Its quasi-conjugacy class is finite, with supp,.(p) = ) and
minimal points (3,0, 0,0), (1,0,1,0) 1n81de A . Tt coincides with a conjugacy class and ling(p) = 0.
Consider the point p = (v, (1,1,0,0)). Its quasi-conjugacy class is finite, with supp,.(p) = ) and
minimal points (1,1, 0,0), (0,1,1,0) 1ns1de A . Tt coincides with a conjugacy class and ling.(p) = 0.
Consider the point p = (v, (0, 1,0, 1)). Its quasi-conjugacy class has supp,.(p) = {2, 3,5, 7} and
minimal points (2, 1,0,0), (1, 1,1,0), (0,1,2,0), (1,0,0,1), (0.1,0, 1) inside A. It coincides with a
conjugacy class since ling.(p) = Z5"PPac ()

<r7w)

Figure 5: In the picture a GBS graph (T',+) with one vertex and four edges.

3 Moves on GBS graphs

In this section, we recall from [For06] and [ACRK25a] the definition of several moves that,
given a GBS graph, produce another GBS graph with isomorphic fundamental group, and review
some literature on the topic.

3.1 List of moves
Let (T',4) be a GBS graph.

Vertex sign-change. Let v € V(T') be a vertex. Define the map ¢’ : E(T') — Z \ {0} such
that ¢’(e) = —¢(e) if 7(e) = v and 9'(e) = (e) otherwise. We say that the GBS graph (T, ¢’)
is obtained from (I',4) by means of a vertex sign-change. If G is the GBS graph of groups
associated to (T, 1), then the vertex sign change move corresponds to changing the chosen generator
for the vertex group G,.

Edge sign-change. Let (I',4¢) be a GBS graph. Let d € E(T') be an edge. Define the map
Y : B(T) — Z\ {0} such that ¢’(e) = —¢(e) if e = d,d and v/(e) = 1(e) otherwise. We say that
the GBS graph (T',¢’) is obtained from (T, ) by means of an edge sign-change. If G is the GBS
graph of groups associated to (I',%), then the vertex sign change move corresponds to changing
the chosen generator for the edge group Ggy.

Slide. Let d,e be distinct edges with 7(d) = t(e) = u and 7(e) = v; suppose that 1(€) = n and
¥(e) = m and ¢(d) = ¢n for some n,m, ¢ € Z\ {0} (see Figure[6). Define the graph I by replacing
the edge d with an edge d’; we set ¢(d") = «(d) and 7(d') = v; we set ¥(d") = ¢¥(d) and ¥(d") = ¢m.
We say that the GBS graph (I”,1)) is obtained from (T',%) by means of a slide. At the level of
the affine representation, we have an edge p —— ¢ and we have another edge with an endpoint at
p + a for some a € AT. The slide has the effect of moving the endpoint from p + a to g + a (see
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Figure@,
p—4q slide p—4q
r—p+a r—qta

Induction. Let (T',) be a GBS graph. Let e be an edge with ¢(e) = 7(e) = v; suppose that
() = 1 and (e) = n for some n € Z \ {0}, and choose ¢ € Z \ {0} and k € N such that
14 | n*. Define the map ¢’ equal to 1) except on the edges d # e,€ with 7(e) = v, where we
set ¢¥'(d) = £-1(d). We say that the GBS graph (T',’) is obtained from (T',%) by means of an
induction. At the level of the affine representation, we have an edge (v,0) — (v, w). We choose
wi € AT such that wy < kw for some k € N; we take all the vertices of other edges lying in A,
and we translate them up by adding w; (see Figure .

Swap. Let (I';%) be a GBS graph. Let ej, ey be distinct edges with t(e;) = 7(e1) = t(es) =
7(e2) = v; suppose that ¢(€1) = n and ¢(e1) = 1n and ¥(€2) = m and 1 (ez) = fom and n | m and
m ‘ E’fln and m ‘ z’;zn for some n,m, €1, 4> € Z\{0} and k1, ks € N (see Figure. Define the graph
IV by substituting the edges e, e2 with two edges €], e5; we set v(e}) = 7(e}) = t(ehy) = 7(e}) = v;
we set 1(e}) = m and (e}) = £1m and ¥(eh) = n and 1h(ey) = lon. We say that the GBS graph
(I",4) is obtained from (I',%) by means of a swap move. Let wi,ws € AT and p,q € V(A) be
such that p < ¢ < p+ kywy and p < q¢ < p + kowy for some ki, ks € N. At the level of the affine
representation, we have an edge e; going from p to p + wy and an edge es going from ¢ to g + wo.
The swap has the effect of substituting them with €/ from ¢ to ¢+ w; and with e} from p to p+wy

(see Figure,
p—p+Wwi swap q——q+w
g —q+wy p—pt+wy

Connection. Let (T',9) be a GBS graph. Let d, e be distinct edges with ¢(d) = w and 7(d) =
t(e) = 7(e) = v; suppose that 1)(d) = m and ¢(d) = ¢1n and 1(€) = n and ¥(e) = ¢n and £, 0y = (¥
for some m,n, 1,02, € Z\ {0} and k € N (see Figure @ Define the graph I'V by substituting the
edges d, e with two edges d',¢’; we set «(d') = v and 7(d") = 1(¢/) = 7(€/) = u; we set Y(d') =n
and ¥(d’) = fam and ¥(e’) = m and (e’) = ¢m. We say that the GBS graph (I”,) is obtained
from (T,1)) by means of a connection move. Let w,wi,ws € A" and k¥ € N be such that
wi + wo = k- w. At the level of the affine representation, we have a two edges ¢ — p + wy and
p — p+ w. The connection move has the effect of replacing them with two edges p — p + wo
and ¢ — g + w (see Figure E[),

q—p+Ww connection pP——q+ Wy
p—p+w q—q+w

Remark 3.1. In the definition of connection move, we also allow the two vertices u, v to coincide.
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slide

slide

Figure 6: An example of a slide move. Above you can see the GBS graphs. Below you can see the
corresponding affine representations.

3.2 Further moves

The following Lemmas [3.2] and [3.3] introduce two additional moves that will be used in the next
sections.

Lemma 3.2 (Self-slide). Leta,b,w € AT and x € A. Suppose a,w controls b and b+2x. Then
we can change
a—a+w . a—a+w
mnto
{b—b—|—x {b—|—x—b—|—2x
by means of a sequence of slides and swaps.
Proof. See [ACRK25a). O

Lemma 3.3 (Reverse slide). Let a,b,w € AT and x € A with w +x > 0. Suppose a, w controls
b,b+x and suppose a, w+x controls b,b+x. If A} contains edgesa — a+w and b — b+x,
then we can change

a—a+w . a—a+w-+x
mto
—— ——
by means of a sequence of slides and swaps.
Proof. See [ACRK25a). O

3.3 Sequences of moves

In this section we recall how the isomorphism problem for generalized Baumslag-Solitar groups
is reduced to checking whether two GBS graphs can be related by means of a sequence of moves.
The following Theorem is one of the main results from [ACRK25a], which will be the starting
point for all the results of this paper. For the notion of totally reduced GBS graph, we refer the
reader to [ACRK25a]. We point out that the requirement of being totally reduced is not restrictive
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) induction Imy

/ induction
T __Induction

Figure 7: An example of an induction move. Above you can see the GBS graphs; here ¢ | n* for
some integer k > 0. Below you can see the corresponding affine representations.

m

_ swap tm

swap

Figure 8: An example of a swap move. Above you can see the GBS graphs; here n ‘ m ‘ K’fln

and n | m | Kézn for some integers ki, ke > 0. Below you can see the corresponding affine
representations.
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at all: every GBS graph can be algorithmically changed into a totally reduced one by means of a
sequence of moves.

Theorem 3.4. Let (I',v), (A, ¢) be totally reduced GBS graphs and suppose that the corresponding
graphs of groups have isomorphic fundamental group. Then |V (T)| = |V (A)| and there is a sequence
of slides, swaps, connections, sign-changes and inductions going from (A, ¢) to (T',v). Moreover,
all the sign-changes and inductions can be performed at the beginning of the sequence.

Proof. See [ACRK25a). O

Thus it suffices to deal with the following problem: given two GBS graphs (T, %), (I, ¢'),
determine whether there is a sequence of edge sign-changes, inductions, slides, swaps, connections
going from one to the other. Note that a sign-change (resp. a slide, an induction, a swap, a
connection) induces a natural bijection between the set of vertices of the graph before and after
the move. Of course we can ignore the issue of guessing the bijection among the sets of vertices and
the sign-changes at the beginning of the sequence, as these choices can be done only in finitely many
ways. In what follows, we will also ignore the issue of guessing the inductions at the beginning
of the sequence, as this hopefully represents a marginal issue - even though sometimes there are
infinitely many possibilities, and thus this issue should be dealt with. In this paper, we will focus
on the following question:

Question 3.5. Given two totally reduced GBS graphs (T',), (I",¢') and a bijection b : V(I'') —
V(T), is there a sequence of (edge sign-changes,) slides, swaps, connections going from (T,4) to
(T, 4") and inducing the bijection b on the set of vertices?

In [ACRK25a] we also show that the Question can be reduced to the case of one-vertex
graphs, and with all edge-labels positive and # 1. However, the tools we develop in this paper are
general and do not make use of these additional assumptions.

3.4 Examples

Theorem can already be used to explicitly describe, in some cases, the list of all the possible
configurations which can be reached from a given one. We show through an example how this can
help in solving the isomorphism problem for GBSs. As usual, in the examples we use A = ZPT¥)|
omitting the Z/27Z summand.

Ezample 3.6. Consider the GBS graph (T, ) with one vertex v and two edges, with labels 8,48
and 27,72 (see Figure . If we apply a connection move, we obtain another GBS graph with one
vertex v and two edges, the new labels being 8,108 and 27,162. It is easy to see that, using slide
moves, we can reach all the configurations of the following list L:

1. Two edges with labels 8,48 and 27,72 - 6, for some k > 0 integer.
2. Two edges with labels 8,108 - 6% and 27, 162, for some k > 0 integer.

But it is also easy to check that if we start at a configuration in L, then we can not apply a
swap move, and if we apply a slide or a connection we fall again in a configuration listed in L.
Thus L is a complete list of all the configurations which can be reached from (I',) using only
slides, swaps, connections. By Theorem we can algorithmically determine whether a GBS
graph (A, ¢) encodes a GBS group isomorphic to the one of (I',). In order to do this, first we
make (A, ¢) into a totally reduced GBS graph (this can be done algorithmically). Then we apply
sign-changes in all the (finitely many) possible ways, and for each of the resulting GBS graphs, we
check whether it appears in the list L. Note that induction is not possible on (I', %), so we do not
need to worry about it in this example.
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27 72

(') A

Figure 10: On the left a GBS graph (I',%) with one vertex and two edges. On the right the
corresponding affine representation A (on the horizontal axis the number of factors 2, on the
vertical axis the number of factors 3).

e

Figure 11: On the left, the configurations that can be reached from (T, %) by applying only slide
moves - the endpoint of one of the edges is allowed to move along the dashed line, while the other
three endpoints are required to stay fixed. On the right, the configurations that can be reached
from (I",¢) by applying a connection and then only slide moves - again, the endpoint of one of the
edges is allowed to move along the dashed line, while the other endpoints stay fixed.

4 Independence of quasi-conjugacy classes

In this section we describe the linear invariants of the moves (which are also essentially isomor-
phism invariants). These are listed in Definition and are the set of primes, the conjugacy and
quasi-conjugacy classes, the number of edges in each conjugacy class.

We divide slide moves into two types: internal (when they involve two edges in the same quasi-
conjugacy class) and external (otherwise). We introduce a notion of external equivalence, we show
that it can be computed from the linear invariants, and that it can be used to describe external
slide moves (without any need to know the exact position of the edges). We show that edges in
different quasi-conjugacy classes can only interact with each other using the external equivalence.
For the isomorphism problem, this means that distinct quasi-conjugacy classes can be dealt with
separately and independently of each other, see Theorem

Finally, we introduce the notions of minimal region. Every endpoint of every edge must lie
above at least one minimal region, making them into excellent “starting points” for slide moves.
We show that each of these regions is forced to contain at least one endpoint of some edge, see
Lemma [£.17] This decreases a lot the amount of possible configurations that one has to consider.

We show with concrete examples how helpful these notions are when trying to describe the
isomorphism problem.

4.1 Linear invariants

Let (T',¢) be a GBS graph and let A be its affine representation. In Section We had defined
a partition of the set of vertices V' (A), given by the equivalence relation of conjugacy. We had also
defined a pre-order <. on V(A), by saying that p <. ¢ if p < ¢’ ~. ¢ for some other vertex ¢'.
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This pre-order =, induces another partition of V' (A), given by the equivalence relation of quasi-
conjugacy. At the same time =< also defines an order relation on the set of quasi conjugacy classes.
These relations can be extended to edges, as follows.

Definition 4.1. Fore, f € E(A) we denote:
1. e ~¢ [ if u(e) ~c u(f), and we say that e, f are conjugate.
2. e Zc fif u(e) Zcu(f)
3. e r~qe fifule) ~qe t(f), and we say that e, f, are quasi-conjugate.

We observe that for e € E(A) we have t(e) ~. 7(e). In particular, in the above Definition
we can use 7(e), 7(f) instead of ¢(e),¢(f), as we prefer. As for vertices, conjugacy and quasi-
conjugacy are equivalence relations on the sets of edges, and =<. induces a partial order on the
set of quasi-conjugacy classes of edges. In particular, we obtain a finite poset of quasi-conjugacy
classes of edges with the order relation =..

Definition 4.2. For e € E(I") we say that:

1. e belongs to the conjugacy class C if 1(e) € C. We define the set
E.(A,C):={e€ EA):le) e C}
of the edges in the conjugacy class C.
2. e belongs to the quasi-conjugacy class @Q if (e) € Q. We define the set
Eqo(A,Q) = {e € B(A) : 1(e) € Q)
of the edges quasi-conjugate to Q.
We are now ready to define the linear invariants of a GBS graph.

Definition 4.3 (Linear invariants). Let (I',¢) be a GBS graph with affine representation A. We
define the linear invariants of (I',) as the following finite list of data:

1. The set of primes P(T, ).

2. The finite list of quasi-conjugacy classes Q) containing at least one edge, each of them given
through the finite data ming.(Q),supp.(Q),ling(Q). For each such quasi-conjugacy class
Q, the number |Eqc(A, Q).

3. The finite list of conjugacy classes C containing at least one edge. For each such conjugacy
class C, the number |E.(A, C)|.

By direct check with the definitions, we have that the linear invariants are, indeed, invariant
by slides, swaps, connections. Sign-changes and induction will preserve the invariants of Items
and |2l An edge sign-change will change the numbers |E.(A, C)|, as it will move an edge from a
conjugacy class C' to the conjugacy class C' + e where e € A is the 2-torsion element. A vertex
sign-change or an induction will change the structure of the conjugacy classes C' and the numbers
|Ec(A, C)]; however, we point out that these changes occur in quite a controlled way, as vertex
sign-changes and inductions are just moving the points inside a copy A} C V(A) by translation.
In particular, we have the following;:

Corollary 4.4. Let (I',¢),(I",9') be two GBS graph and suppose that there is a sequence of
slides, swaps, connections going from one to the other and inducing a bijection V(T') = V(IV).
Then this induces a bijection V(A) = V(A'), and (T,4),(I",9") have the same linear invariants

(Definition [4.3)).
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4.2 External equivalence

Let (T',4) be a GBS graph and let A be its affine representation.
Definition 4.5. Let p,q € V(A) with p ~q q.

1. We say that p, q are externally equivalent, denoted p ~cc q, if there is an affine path, going
from p to q, which does not use edges quasi-conjugate to p and q.

2. We denote p = q if p < ¢’ for some q' ~ee q.
3. We say that p, q are quasi-externally equivalent, denoted p ~gee q, if P Zce ¢ and g Zce P.

The (quasi-)external equivalence class of p is its (quasi-)conjugacy class in the GBS graph where
we remove all edges quasi-conjugate to p. In particular, they can be described in terms of the same
data as for (quasi-)conjugacy classes.

Definition 4.6. Let (I',¢)) be a GBS graph and let p be a vertex of its affine representation A.

1. Define the external minimal points

mingee(p) = {qg € V(A) : ¢ ~gee p and for all ¢’ =ee p with ¢ < q we have ¢ < ¢'}.
2. Define the external support
SUPPyee (P) = U{supp(u) cu€ A" and p+u ~gee pt € P(T, 7).

3. Define the external linear algebra

lingee(p) = {r € A:r=w —w for some w,w' € A" such that p+ W ~ee p+ W' ~ee D}

Lemmas [2.12]|2.14][2.15][2.16] hold for external equivalence in the exact same way as they do for
conjugacy. Similarly, it is easy to see that mingee(p), SUPPyee (P); lingee (p) are invariant if we change
p by quasi-external equivalence. Propositions [2.18] and also hold for external equivalence,
meaning that mingee(p), SUPPyee(P); lingee(p) can be used to describe external equivalence class
using a finite set of data. Finally, the algorithms of Propositions [2.27][2:28) and Corollary [2:29] can
be used for external equivalence as well, making everything algorithmically computable.

The following Lemma [4.7 shows that the external-equivalence classes are uniquely determined
by the linear invariants.

Lemma 4.7. Let (T',4), (IV,9") be GBS graphs with a bijection V(I') = V(T'). Suppose that they
have the same set of primes and the same quasi-conjugacy classes containing at least one edge.
Then (T,4), (T, 4") have the same external equivalence and quasi-external equivalence relations.

Proof. Let p ~qc q be two vertices in a quasi-conjugacy class @ in the affine representation A of
(T, ). Then p ~ee ¢ if and only if there is a sequence p = p1,p2, ..., pr—1,p¢ = q with the following
properties:

1. For alli=1,...,¢ — 1 there is a quasi-conjugacy class Q; # @) containing at least one edge,
and points r; ~¢ s; € Q;.

2. Foralli=1,...,¢£— 1 we have that p; = r; + w; and p; 1 = s; + w; for some w; € A™.

If p ~e¢e ¢ then the existence of such a sequence follows from the definition. Conversely, if there
is such a sequence, then we can easily construct an affine path from p to ¢ which does not use
any edge in (. But the existence of such a sequence only depends on the quasi-conjugacy classes
containing at least one edge. The conclusion follows. O
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4.3 External slide moves

The following Lemma [£.8] introduces a new move, based on external equivalence classes. As we
will see, this is the key to separate the main Question [3.5|into several independent problems, each
of them internal to a single quasi-conjugacy class.

Lemma 4.8 (External slides). Let (I',9) be a GBS graph and let A be its affine representation.
Suppose that A contains an edge p —— q and that q ~ee ¢’ for some p,q,q' € V(A). Then we can
change p — q into p —— ¢’ by means of a sequence of slide moves.

Proof. Since q ~¢e ¢’ there must be an affine path from ¢ to ¢’ that does not use any edge quasi-
conjugate to ¢. In particular, the affine paths does not use the edge p —— ¢. Thus we can slide
p — q along the affine path in order to change it into p — ¢'. O]

Let (T, 1) be a GBS graph and let A be its affine representation. Observe that, if we perform
a swap or a connection move involving two edges e, f, then f ~y. e. Instead, when changing an
edge e by means of a slide over an edge f, there are two possibilities:

1. f ~qc e, in which case we say that the slide is internal.

2. f #q4c e, in which case we must have f <. e, and the slide move is a particular case of the
external slide move of Lemma (4.8

In particular, this means that we can deal with distinct quasi-conjugacy classes separately and
independently from each other.

Theorem 4.9 (Independence of quasi-conjugacy classes). Let (T',4), (I, 9’) be two GBS graphs
with a bijection V(T') = V(I''). Then the following are equivalent:

1. There is a sequence of slides, swaps, connections going from (T,4) to (IV,4') inducing the
given bijection.

2. For every quasi-conjugacy class Q, there is a sequence of swaps, connections, internal slides,
external slides (Lemma [4.8)) - each of them involving only edges in Q - going from the con-
figuration in (T',4) to the configuration in (I’ 4.

Proof. Every slide move which involves two edges from different quasi-conjugacy classes can be
replaced by an external slide as in Lemma [4.8] But external slides do not depend on the position
of the edges in the other quasi-conjugacy classes (but only on the external equivalence relation).
Thus, different moves, involving edges in different quasi-conjugacy classes, now commute. Thus
we can deal with each quasi-conjugacy class separately and independently. O

In some particular cases, the possible configurations of certain quasi-conjugacy classes are
extremely easy to describe.

Corollary 4.10. Let (T',v¢) be a GBS graph with affine representation A, and let Q be a quasi-
conjugacy class. Suppose that QQ contains only one edge e. Then, all the configurations inside Q
obtained by sequences of external slides, internal slides, swaps, connections, can also be obtained
by performing two external-slides on the two endpoints of e.

Proof. With only one edge in the quasi-conjugacy class, it is impossible to perform internal slides,
swaps, connections. O

Corollary 4.11. Let (I',v) be a GBS graph with affine representation A, and let Q) be a quasi-
conjugacy class. Suppose that, for all p,p’ € Q, we have that p ~. p' if and only if p ~c p'. Then,
all the configurations inside @ obtained by sequences of external slides, internal slides, swaps,
connections, can also be obtained by performing external-slides only, and once on every endpoint
of every edge.

Proof. Tt is easy to manually check that a single move between internal slide, swap, connection,
can be substituted with external slides. The conclusion follows. O
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Corollary 4.12. Let (I',v¢) be a GBS graph with affine representation A, and let QQ be a quasi-
conjugacy class. Suppose that supp..(Q) = (. Then only finitely many configurations can be
obtained in Q by means of sequences of external slides, internal slides, swaps, connections.

Proof. 1f supp.(Q) = (0 then Q is finite, and thus finitely many configurations are possible. O

4.4 Mobile edges

Clay and Forester introduced a notion of mobile edge [CF08, Definition 3.12], which played an
important role in the subsequent literature on GBSs (e.g. [Dud17, [Wan25]). An edge e € E(A) is
mobile if and only if it belongs to a quasi-conjugacy class @ with supp,.(Q) # (. As a corollary of
the above discussion, we recover the following well-known results:

Corollary 4.13 ([For06, Theorem 8.2]). Let (I',%) be a GBS graph and suppose that q(m1(T)) N
At = {0}. Then only finitely many configurations can be obtained from (U',+) by means of
sequences of sign-changes, inductions, slides, swaps, connections.

Proof. 1f q(m1(T))N AT = {0} then for every quasi-conjugacy class @ we must have Supp.(Q) =0,
and the result follows from Corollary O

Corollary 4.14 ([Dudl7, Theorem 2]|). There is an algorithm that, given GBS graphs (I',¢), (A, ¢)
such that (T',4) has at most one mobile edge, decides whether the corresponding GBS groups are
isomorphic or not.

Proof. Let @ be a quasi-conjugacy class in the affine representation A of (T',¢). If @ contains at
least one edge, then either Supqu(Q) = () (and we can describe the isomorphism problem using
Corollary [4.12)) or @ contains only one edge (and we can decide the isomorphism problem using
Corollary [4.10)). O

4.5 Minimal regions of a quasi-conjugacy class

Let (T',4) be a GBS graph and let A be its affine representation. Let @ C V(A) be a quasi-
conjugacy class.

Definition 4.15. A quasi-external equivalence class R C Q is called region of Q.

The set of regions of () is a partition of (). Moreover, the relation <. makes the set of regions
of @ into a partially ordered set. A minimal region of @ is a region M C ) which is minimal by
=ee. Every minimal region must contain at least one point from ming(Q) - possibly more than
one. Each quasi-conjugacy class contains finitely many minimal regions, and always at least one.

Remark 4.16. Not every point in ming(Q) needs to belong to a minimal region.

The reason for which we are interested in the minimal regions of @ is that they often give
us important information about the position of the edges in the quasi-conjugacy class (especially
when the quasi-conjugacy class contains few edges compared to the number of minimal regions, or
when the configuration is particularly “rigid”).

Lemma 4.17. Let QQ be a quasi-conjugacy class containing at least one edge. Then every minimal
region of QQ must contain at least one endpoint of some edge. In particular, if Q contains d > 1
minimal regions, then Q contains at least f%1 edges.

Proof. Edges from other quasi-conjugacy classes do not allow us to change region. Therefore, if we
want to move away from a minimal region M, we need to do that using an edge belonging to our
quasi-conjugacy class (). By minimality, this means that there must be an edge with an endpoint
in M. O

Remark 4.18. The lower bound [£] in the above Lemma is optimal.
Definition 4.19. An edge e is called floating if none of i(e),7(e) is in a minimal region.

Note that the number of floating edges is not invariant when performing moves.
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4.6 Examples

As usual, in the examples we use A = ZPT%) omitting the Z/27 summand.

Ezxample 4.20. In Figure [12| we can see two GBS graphs. The corresponding GBS groups are non-
isomorphic. In fact, the linear invariants (more specifically: the conjugacy classes) are different in
the two examples.

Equivalently, we have the following. The generator g of the vertex group is definable (up to
conjugation and up to taking the inverse), for example as the unique elliptic element with no proper
root. This means that any isomorphism from one GBS to the other must send the generator of
the vertex group to the generator of the vertex group (or to a conjugate, or to a conjugate of the
inverse). In the GBS group on the right we have that ¢g* is not conjugate to ¢g. In the GBS group
on the right we have that ¢g* is conjugate to ¢g3. This proves that they are not isomorphic.

Note that the modular homomorphism will not distinguish these two examples. For both
groups, the modular homomorphism is a map from a free group of rank three to Q*, sending the
three elements of some bases to 1,2,3 € Q*.

Figure 12: Two non-isomorphic GBS groups, as in Example

Ezxample 4.21. In Figure we can see three GBS graphs. The corresponding GBS groups are
pairwise non-isomorphic. More generally, we can substitute the labels 8,8 in the graph on the left
with labels 2% 2 for k& > 1, and we obtain an infinite sequence of pairwise non-isomorphic GBS
groups. Once again, the linear invariants are different in the three examples. However this time
the conjugacy classes are the same; the difference lies in the number of edges in each conjugacy
class.

Equivalently, we have the following. Consider the generator g of the vertex group (which is
definable up to inverse and conjugation). Consider the generators of the stabilizers of the edge
groups. How many generators of edge stabilizers are conjugate to g*? How many of them are
conjugate to ¢8? How many to ¢'®? In the GBS on the left the answers are 1,0,0 respectively:
there is one edge whose generator is conjugate to g*, and no edge whose generator is conjugate to
g% or to ¢'®. For the GBS in the middle the answers are 0, 1,0 respectively. For the GBS on the
right the answers are 0,0, 1. Since these numbers are isomorphism invariants, they prove that the
three GBSs are pairwise non-isomorphic.

Note that these numbers are only invariant among fully reduced GBS graphs representing the
same GBS group. If one allows for expansions, then it is possible to add a new edge with stabilizer
in any prescribed conjugacy class.

We are also using the fact that in these examples induction is not possible. If induction was
possible, then the generator g of the vertex group would not be definable. In this case, variants of
the same argument will work, but one has to be more careful.
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Figure 13: Three pairwise non-isomorphic GBS groups, as in Example

Ezample 4.22. We can now describe the isomorphism problem for the GBS graph of Example [2.31]
Using the same notation as in Example call (T,4) the GBS graph, with a single vertex v,
and A its affine representation. The edges of A are partitioned into four quasi-conjugacy classes
Q1,Q2, Q3, Qa, see Figure which had been described in Example 2.31] Suppose that we try
and perform a sequence of slides, swaps, connections starting from this GBS graph.

The quasi-conjugacy class Q1 contains only the edge (1,3) — (3, 2), and thus by Corollary
that edge can not be changed. In the quasi-conjugacy classes @3, @4, the notions of conjugacy and
external equivalence coincide, and thus by Corollary [£.11] we can change the endpoints of the edges
at will using external slides, and that is a complete list of all configurations that can be reached
with slides, swaps, connections.

The quasi-conjugacy class Q2 contains two edges, belonging to two distinct conjugacy classes,
and one minimal region My = {(4,0)}; we have ling(Q2) = ((2,0)). For simplicity of notation,
call a = (4,0) and u = (2,0). Let e be the edge belonging to the conjugacy class of (4,0): by
Lemma the edge e must always be given by (4,0) — (4 + 2a,0) for some integer a > 0.
If @ = 0 then M would be a quasi-conjugacy class by itself, contradiction, so we also always
have a # 0. Let f be the edge belonging to the other conjugacy class: the edge f must always
be given by (5 + 2b,0) — (5 + 2¢,0) for some integers b,c > 0. Finally, we must always have
that ((2a,0), (2b — 2¢,0)) = ((2,0)), otherwise the linear algebra of Q2 would not be the correct
one. On the other hand, using the results of [ACRK25a], every configuration satisfying the above
conditions can actually be reached. To summarize, the configurations for ()2, that we can reach
with a sequence of slides, swaps, connections, are exactly the ones such that:

1. e is given by (4,0) — (4 + 2a, 0) for some integer a > 1.
2. fis given by (5 + 2b,0) — (5 4 2¢,0) for some integers b,c > 0.
3. (a,b—c)=1.

Finally, we take into account the (finitely many) sign-changes, and we observe that induction
moves do not apply to this example. This gives algorithmic solution to the isomorphism problem
for an arbitrary GBS graph against this specific one.

M,
Qs ) M,
M]
| - Qs S : M
,,,,,,,,,,,,,, ES Sery— AN
M,
Quasi-conjugacy classes Minimal regions

Figure 14: The conjugacy classes and the minimal regions for the GBS graph of Example
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Ezample 4.23. We can now describe the isomorphism problem for the GBS graph of Example [2.32]
Using the same notation as in Example call (T',4) the GBS graph, with a single vertex v,
and A its affine representation.

The edges of A are partitioned into three quasi-conjugacy classes: one in the conjugacy class
Py of the point (3,0,0,0) in A, one in the conjugacy class P, of the point (1,1,0,0) in A,
and two in the conjugacy class @ of the point (0,1,0,1) in A}. For a description of the quasi-
conjugacy classes Py, Py, Q see Example [2.32] These three quasi-conjugacy classes form a poset
given by P; <. Q and P <. Q. By Theorem we can examine different quasi-conjugacy classes
independently.

The quasi-conjugacy class P; only contains the edge (3,0,0,0) — (1,0, 1,0), so by Corol-
lary [£10] that edge can not be changed by any move. A similar analysis on P, tells us that the
edge (1,1,0,0) — (0,1, 1,0) will not change either.

The quasi-conjugacy class @ has three minimal regions M; = {(1,0,0,1)} and M, =
{(0,1,0,1)} and M3 = {(a,1,¢,0) : a4+ ¢ > 2}. By Lemma [£.17] along any sequence of slides,
swaps, connections, we will always have (at least) one endpoint in My, one endpoint in Ms, one
endpoint in M3. We only need to understand where the fourth endpoint might be. Consider the
following list L of configurations:

1. For a + ¢,a’ + ¢ > 2 the configurations

(1,0,0,1) — (a,1,¢,0)
(Oa 17 07 1) - (0/, 17 C/, O)

2. For a+c¢ > 2 and b,d > 0 the configurations

(1,0,0,1) - (Cl,l,C, 0)
(Oa 1507 1) - (1 + baoada 1)

3. For a+c¢> 2 and b,d > 0 the configurations

(1707 07 1) - (bv ]-a da 1)
(0,1,0,1) — (a,1,¢,0)

Tt is easy to see that all the configurations in the list L can be reached from (T',¢) by means of
internal slide moves and external slide moves. Moreover, if we are at any configuration in L, then
no swap or connection is possible, and by performing an (internal or external) slide we end up at
another configuration in L. It follows that L is a complete list of all the configuration that can be
obtained from (I',¢) by means of slides, swaps, connections. If we are given a GBS graph (A, ¢),
and we want to know whether it encodes the same group as (I, 1), then we just change (A, ¢)
into a totally reduced GBS graph (this can be done algorithmically), we perform sign-changes in
all the possible (finitely many) ways, and we check whether one of the resulting graphs appears in
the list L. Note that, since induction can not be performed on (I',%), we do not have to worry
about it in this case.

Ezample 4.24. Consider the GBS graph (T',¢) with one vertex v and four edges, as in Figure
and call A its affine representation. The edges are partitioned into two different quasi-conjugacy
classes P <. @, see Figure The quasi-conjugacy class P contains one edge and one minimal
region N = {(1,0)}. The quasi-conjugacy class @) contains three edges and two minimal regions
My ={(k,1) : k > 1} and M3 = {(0,3)}. We now prove that the linear invariants are sufficient to
determine the isomorphism-type of (T', ).

Suppose that we are given another GBS graph (I',4’) with the same linear invariants. Of
course we must have an edge (1,0) — (4,0) in P. Let ey, eq,e3 be the three edges in Q, with
e1 ~¢ (2,1) and eg ~¢ (3,0) and ez ~¢ (2,2). We observe that, by Lemma there must always
be at least one edge with an endpoint in M, and by looking at the conjugacy classes, this edge
must be es. We deal with cases.

CASE 1: The other endpoint of es falls inside M;. In this case es must be given by
(0,3) — (a,1) for some integer a > 1, and up to external slide we can assume that es is given by
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(0,3) — (1,1). If we now keep ey fixed, we can move the endpoints of e;, e3 at will inside their
conjugacy class. In particular, we can arrive at the configuration with e; given by (1,3) — (2,1)
and ez given by (1,4) — (2,2), from which we can reach (T, ).

CASE 2: ey is given by (0,3) — (a,b) for some integers (a,b) > (1,3). By Lemma
we obtain that e; must have one endpoint inside M;. It can not have both endpoints inside My,
otherwise M7 would be a quasi-conjugacy class by itself, contradiction; up to external slide, we can
assume that e; is of the form (2,1) — (¢, d) for some integers (¢, d) > (0, 3). Up to external slide,
we can obtain (a,b) > (0,3), (2, 1), and up to sliding e; along es, we can obtain (¢, d) > (0, 3), (2, 1).
By means of slides, we can now make all the edges very long, and then we can use Theorem [B-1] to
reach (I', ) - here we are using that the quotient ling.(Q)/((3,0)) is 2-generated, and thus every
triple of generators is Nielsen equivalent to any other.

CASE 3: ey is given by (0,3) — (0,a) for some integer a > 3. We can not have a = 3,
otherwise My would be a quasi-conjugacy class by itself, contradiction; thus a > 4. One of ey, e3
must be of the form (0,0) — (¢,d) for integers b > 3 and (¢,d) > (1,1), otherwise the set

{(0,k) : kE > 3} would be a (union of) quasi-conjugacy class(es) by itself, contradiction. But then
we can perform a connection move and reduce ourselves to case 2.

To summarize, a GBS graph can be obtained from (I',%) by means of a sequence of slides,
swaps, connections, if and only if it has the same linear invariants as (I, ¢). This characterizes the
isomorphism problem for (T',%). As usual, it remains to check the (finitely many) sign-changes.
Note that induction does not apply to this example.

Figure 15: The GBS graph (T',¢) and the affine representation A of Example

‘. . . . M,

N

Quasi-conjugacy classes Minimal regions

Figure 16: The quasi-conjugacy classes and the minimal regions for the GBS graph of Example[1.24]
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5 GBSs with one qc-class and full-support gaps

The aim of this section is to classify GBS graphs with one qc-class and full-support gaps.

5.1 One qc-class

Definition 5.1. Let (T',v) be a GBS graph with affine representation A. We say that (T',1)) has
one qc-class if all of its edges belong to the same quasi-conjugacy class.

Note that the property of having one qc-class is an isomorphism invariant. In this case the
external equivalence relation is trivial in that quasi-conjugacy class, and in particular the minimal
regions are essentially points (to be formal, couples of points, with only the Z/2Z component
changing). Along this section, we will abuse notation and talk about minimal points instead of
minimal Tegions.

In what follows, we will also assume that the quasi-conjugacy class has non-trivial quasi-
conjugacy support: for a quasi-conjugacy class @ with supp,.(Q) = (), the isomorphism problem
can be solved using Corollary

5.2 Graph of families

Let (T',4) be a totally reduced GBS graph with affine representation A. Suppose that (T, )
has one qc-class Q.

Along the whole Section [5} we consider the graph of families F(Q) as defined in Section
In this setting, it has following properties:

1. Each minimal point of @ belongs to exactly one family. Each family contains at least one
minimal point. Therefore, the finite set of minimal points of @) is partitioned into |V (F(Q))]
non-empty subsets.

2. According to Lemma we have exactly one edge in F(Q) for every edge in I'. In other
words, we have that E(F(Q)) = E(T") = E(A).

3. We have the modular homomorphism gg : 71 (F(Q)) — A as defined in Section

Definition 5.2. A family F € V(F(Q)) is called individual if it contains exactly one minimal
point, and non-individual otherwise.

Remark 5.3. In the particular case when supp,.(Q) = P(I',%), the graph of families is exactly
F(Q) =T. For simplicity, the reader can go through this whole section with this extra hypothesis
in mind (this extra assumption does not make any of the arguments easier).

5.3 One endpoint of an edge at each minimal point

Let (I',¢) be a totally reduced GBS graph with affine representation A. Suppose that (I, )
has one qc-class Q with supp,.(Q) # 0.

Definition 5.4. We say that (T, ) is clean if every minimal point contains exactly one endpoint
of exactly one edge, and no edge has both endpoints at minimal points.

Since we are assuming that supqu(Q) # (), we can always arrange for the GBS graph to be
clean, as we now explain. Define the graph L as follows:

e V(L) is the set of minimal points of (T, ), together with an extra vertex vgoating-

e FE(L) = E(A), with the same reverse map. For e € E(A), if 75 (e) is a minimal point then we
set 7z(e) = Ta(e), otherwise we set 7(€) = Vaoating-

Note that loops in £ at vaoating correspond to floating edges in (I', ). Since (T, ) has one gc-class
@, we must have that £ is connected. Note that (I',¢) is clean if and only if in £ every minimal
point m has valence one, and the only edge at m connects m to Vgoating-
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We now define a clean projection from (I',4) to a clean GBS graph. Choose a maximal tree
of L. Define the GBS graph (I, 1)’) as follows. If e € E(L) lies in the maximal tree, we consider
its two endpoints ¢(e), 7(e), we take the one that lies nearer to Vfloating, and we slide it along the
maximal tree until it ends up at vgeating. We do this for all edges that lie in the chosen maximal
tree: after this, the maximal tree is a star around vgeating. Now, if e € E(L) is an edge which does
not lie in the maximal tree, then we change 7(e) with a single slide move, along a single edge in
the maximal tree, so that it ends up at vgcating. We do this for all endpoints of all edges that do
not lie in the maximal tree. The result of this procedure is a clean GBS graph (I, ¢).

Lemma 5.5. The above clean projection has the following properties:

1. For a fixed mazimal tree, performing the slide moves in a different order will produce the
same clean GBS graph (I”,4').

2. For different choices of mazimal trees, producing clean GBS graphs (I",4"), (T "), there
is a sequence of edge sign-changes and slides going from (I',4¢") to (I, ¢") and such that
every GBS graph along the sequence is clean.

Proof. Statement |1} is immediate from the definitions.

For statement |2, we consider the following particular case first. Suppose that we are given an
embedded cycle ejes ... ep in £, such that tz(e1) = 72(€r) = Vfioating. Suppose that a maximal tree
T for L contains all the cycle except for ey, for some 1 < k < ¢ — 1. Suppose that the maximal
tree T” for L is obtained from T by removing e, and adding e;.;. We want to prove that T and
T’ give the same clean projection (up to a sequence of slides and edge sign-changes going only
through clean GBS graphs).

Let p = ta(e1) and ¢ = 7a(er). Write 7a(e;) = ta(eir1) + € for €, € A torsion element, for
i=1,...,0—1. The edges ¢; for i # k, k+1 give the same result, when changed using the maximal
tree T or using the maximal tree T”. The edges ey, er11 are changed into

Taler) —pter+ - +ep pPre+--tep1——qtegt+ e
pter+--t e ——q+eppr e tA(ekt1) —— @+ €pp1+ - e

when using the maximal tree T or when using the maximal tree T”, respectively. It is immediate to
see that we can pass from one configuration to the other by means of a slide move and possibly an
edge sign-change move (while keeping the GBS graph clean). All the edges different from ey, ..., e,
are changed into different expressions by using T" or 1", but each endpoint can be adjusted with
at most a slide move (while keeping the GBS graph clean).

Thus we can take an embedded cycle, contained in T except for one edge, and passing through
Vfioating, and we can change the choice of which edge is outside T'. A similar computation shows
that the same is true for embedded cycles not passing through vgeating. But by means of moves
like that, we can pass from any maximal tree to any other maximal tree. The result follows. [J

Lemma 5.6. Let (I',v), (A, ¢) be related by a edge sign-change, slide, swap or connection; let
(T, 4", (A',¢') be their respective clean projections. Then there is a sequence of edge sign-changes,
slides, swaps, connections passing from (I",¢") to (A',¢') and going only through clean GBS
graphs.

Proof. This is an easy check with the definitions, using the above Lemma [5.5 O

Thanks to the above Lemma [5.5| and Lemma for the rest of this section we will be able to
assume that our GBS graphs are clean, and that all the sequences of moves go only through clean
GBS graphs.

In particular, if (T',¢) is a GBS graph with one qc-class @, and if supp,,.(Q) # 0, then a strong
version of Lemma holds. To be precise, up to taking the clean projection of (I", 1), for every
minimal point m we have exactly one edge with exactly one endpoint at m, and all the other edges
are floating edges. In particular, a clean GBS graph (T, %) has at least as many edges as minimal
points; moreover, the inequality is strict if and only if (T', ) has floating edges. This motivates
the following definition.

Definition 5.7. Let (I',¢) be a GBS graph with one qc-class Q, and with supp.(Q) # 0. We say
that (T', ) has floating pieces if it has strictly more edges than minimal points.
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5.4 One endpoint in each individual family

Let (T',4) be a totally reduced GBS graph with affine representation A. Suppose that (T, )
has one qc-class @ with supp,,.(Q) # 0.

Definition 5.8. If F € V(F(Q)) is an individual family (Definition [5.2)), then we say that (', )
is F-polished if F' contains exactly one endpoint of one edge.

Let F' € V(F(Q)) be an individual family, and let m be the unique minimal point in F. A

set of F-polishing data is given by pairwise distinct edges eq,...,e,, e satisfying the following
properties:
1. For j =1,...,n we have that e; goes from m + a; to m + b;.

2. For j =1,...,n we have supp(a;) C (supp(b;_1)U...Usupp(b1)).
3. The edge e goes from m + ¢ to p for some p # m.
4. We have supp(c) C (supp(b,) U ... Usupp(by)).

If p belongs to a family F’ € V(F(Q)), then we say that the set of polishing data is pointing to
F’. As in [ACRK254] we can choose sufficiently large natural numbers ki, ..., k,, and define

w; = (bj —a;j) +kj_1(bj_1 —aj_1) + kj_1kj—2(bj_2 —aj_2) + -+ kj_1kj_2... k(b1 —a1)

for j =1,...,n, and w = k,w, — c. This allows us to define an F-polishing procedure that
changes the edges

m+a; — m+ by m+a —p+w+a

m+as — m + bo p+w+as —p+w+ag+w;

m+ a3 — m + bs . p+w+as—p+w+az+ wso
mto

m+a, — m-+ b, p+w+a, —p+w+a, +w,_1

m+c—p p—p+w,

and all other endpoints of the form m + d into p + w 4+ d.

In the same way as in [ACRK25a)], we can see that for big enough ki, ..., k&, the F-polishing
procedure can be obtained through a sequence of moves, giving an F-polished GBS graph as a
result.

Lemma 5.9. For different choices of the set of F-polishing data and of sufficiently large constants,
producing F-polished GBS graphs (T,4"), (T",4"), there is a sequence of edge sign-changes, slides,
swaps, connections going from (I, ¢") to (I, ¢") and such that every GBS graph along the se-
quence is F-polished.

Proof. Analogous to [ACRK25a). O

Lemma 5.10. Let (I',9), (A,v) be related by an edge sign-change, slide, swap or connection;
let (TV,¢"), (A, ¢") be corresponging F-polished GBS graphs. Then there is a sequence of edge
sign-changes, slides, swaps, connections passing from (I, 4") to (A’;4’) and going only through
F-polished GBS graphs.

Proof. Analogous to [ACRK25a]. O

Note that, if F, G € V(F(Q)) are two individual families, and if (T",¢) is G-polished, then there
must be a set of F-polishing data pointing to some F’ # G (unless F, G are the only families). If
we use such a set of data to perform the above procedure, the result will be G-polished. Moreover,
if we restrict only to set of data pointing to families F’ # G, then Lemma[5.9and Lemma still
hold, producing sequences of moves going only through G-polished GBS graphs. In particular, in
what follows we can assume that all our GBS graphs are F-polished with respect to all individual
families F' € V(F(Q)), and we can consider only sequences of moves going through F-polished
GBS graphs.
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Remark 5.11. The F-polishing procedure is also compatible with the notion of clean. All of the
above discussion, Lemma [5.9] and Lemma [5.10| still hold if we add the additional requirement that
all GBS graphs appearing are clean. In particular, we can restrict our attention to GBS graphs
which are clean and F-polished for all individual families F' € V(F(Q)), and to sequences of moves
going only through GBS graphs of this kind.

5.5 Full-support gaps

Let (T',¢) be a GBS graph with affine representation A. Suppose that we are given two vertices
p,q € V(A) with ¢ > p: then we can write ¢ = p + w for a unique w € AT, which we call the
gap from p to g. We say that the gap from p to q is full-support if supp(w) = supp,.(p) (which in
particular implies that ¢ ~gc p).

Definition 5.12. Let (T',4) be a GBS graph and let Q be a quasi-conjugacy class. We say that Q
has full-support gaps if for every edge e in Q we have that either T(e) lies in a minimal region,
or 7(e) lies above a minimal point of Q with full-support gap.

This means that, whenever an end-point of an edge that falls strictly above a minimal region,
the gap can be taken to have the full quasi-conjugacy support. Note that the property of being
full-support gap is not an isomorphism invariant, nor invariant under performing moves.

5.6 GBSs graphs with floating pieces

Let (T',4) be a totally reduced GBS graph with affine representation A. Suppose that (T, )
has one qc-class @ with supp,.(Q) # 0, and that (I, ) is clean. Suppose that (I',¢) has floating
pieces.

Fix a family Fy € V(F(Q)). For every family F' # Fj we fix a minimal point m g in that family.

Definition 5.13 (Normal form for GBSs with floating pieces). We say that (I',v) is in normal
form (with respect to the family Fy and the minimal points {mr}rxr,) if the following conditions
hold:

1. For every family F # Fy and for the minimal point mp, take the unique edge e with 1(e) =
mp. We require that 7(e) is in Fy, and lies above all minimal points of Fy with full-support

gap-

2. For every family F and for every minimal point m (except mp), take the unique edge e
with v(e) = m. We require that 7(e) is in F, and lies above all minimal points of F with
full-support gap.

3. For every floating edge e, we require that 1(e), T(e) are in Fy, and lie above all minimal points
of Fy with full-support gap.

Proposition 5.14. Suppose that (I';v) has full-support gaps. Then, for every family Fy and
manimal points {mp}p+r,, we can bring (I',1)) to normal form by means of a sequence of slides,
swaps, connections.

Proof. For every minimal point m, let e,, be the unique edge such that t(e,,) = m. We say that
em 18 positive if T(e,,) is above m with full-support gap.

In steps 1 and 2 we maximize the number of positive edges, and we observe that the remaining
edges at the minimal points for a tree in the graph of families 7(Q). In step 3 we change the
tree, and we assume that all non-positive edges at the minimal points point at Fy. In step 4, we
make all positive edges very long (taking advantage of floating edges). In step 5, we arrange for
the non-positive edges to be at the prescribed minimal points mg.

STEP 1: If e,, is not positive, then we choose a minimal point m’ # m such that 7(e,,) is above
m’ with full-support gap. If e,  is not positive, then we choose m’ such that 7(e,,’) is above m”
with full-support gap; and so on. If the sequence does not terminate with a positive edge, then
we find a cycle, and by sliding one edge of the cycle along the others, we increase the number of
positive edges. Note that the hypothesis of having full-support gaps is preserved.
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We reiterate this argument until, for every sequence m,m’,m”, ..., the sequence eventually
ends at some m®*) with €, Dositive. At this point, we can slide 7(e,,) along e/, €mr, ... in
order to get that 7(e,,) is above m(¥) with full-support gap. Similarly for all the other non-positive
edges

Thus we can assume that, for all minimal points m, either the edge e,, is positive, or 7(e.,)
lies above some other minimal point m’ with full-support gap and with e,,s positive.

STEP 2: Now consider the graph of families F(Q), and remove the floating edges to get a
graph F'.

Suppose that F’ contains an embedded (unoriented) closed cycle v containing a non-positive
edge e,,. Thus 7(e,,) lies above some minimal point m’ with full-support gap and with e, positive.
By sliding 7(e;,) along e,,» many times, we can assume that all components of 7(e,,) in supp.(Q)
are very big. We can then slide 7(e,,) along the other edges of v until it becomes positive. This
increases the number of positive edges.

By reiterating this procedure, we can assume that every embedded closed cycle in F' is a single
loop consisting of a positive edge. This means that F’ is a tree plus some loops at the vertices
consisting of positive edges.

STEP 3: We now want all non-positive edges of F' to point towards a prescribed family Fp.
As we said before, non-positive edges of F’ form a tree. Suppose that e,, is a non-positive edge,
and 7(ey,) is more far from Fy than i(ep,) (in the tree). Then we have that 7(e,,) lies above m/
such that e,  is positive, and thus we can perform a connection move. This substitutes e,,, €,
with f,,, fim respectively, where f,, is positive and f,,/ is non-positive; what we gain is that now
T(fms) is more near to Fy than ¢(f,, ). If some other non-positive edge e,,~ has 7(e,,~) above m/,
then we now slide 7(e,,~) along f,,/, in such a way that 7(e,,~) ends up above m with positive
edge fr,.

Thus we can assume that all non-positive edges point towards F. For every non-positive edge
em, we have that 7(e,,) is above a positive edge, and thus up to slide we can make all components
of 7(es) in supp,.(Q) very big, and then slide 7(e,,) so that it falls in Fy, and above all minimal
points of Fj with full-support gap.

Thus now F’ is made of non-positive edges (one for each family F' # Fp, all pointing towards
Fy, and with terminal vertex having all components in supp,.(Q) very big), and of positive edges
at every other minimal point.

STEP 4: Up to slides, we can assume that every floating edge has both endpoints in Fjp.

Let e, be a positive edge given by m —— m + u for u € A™ with supp(u) = supp,.(Q). Take
a floating edge e and, up to slides, assume that «(e) lies above m and 7(e) = t(e) + w for some
w € AT with supp(w) = supp,.(Q) and with all non-zero components of w very big. Then we
perform a swap move, and we get an edge m —— m + w and a floating edge. In other words, we
can assume that all components in supp,.(Q) of all positive edges are very big.

STEP 5: For a family F' # Fjy, take a prescribed minimal point mp. If e,,, is positive, then
there is another minimal point m’ with e, non-positive. We have that 7(e,, ) lies above some
minimal point m” in Fy, with e,,~ positive. We now perform a connection to change e,,, €,,~ into
fm/s fmrr with fi,r positive. Then we perform a connection to change e, .., fm INt0 gy, g With
gm positive. In this way, the edges at m’, m” are now positive, and the edge at mp is not.

Thus the resulting GBS graph is in normal form, as desired. O

Proposition 5.15. Suppose that (T',v), (A, ®) are in normal form. Suppose that they have the
same minge(Q), suppy.(Q), ling(Q) and the same number of edges in each conjugacy class (up to
edge sign-changes). Then there is a sequence of edge sign-changes, slides, swaps, connections going
from one to the other.

Proof. Let A be the affine representation of (I',¢). We have the edges mp — cp for F' # F, and
cr € Fy. We can easily assume that all the other edges are given by p; — p; + x; with x; € A™
and supp(x;) = supp,.(Q), for i =1,...,r.

It is fairly easy to see that, by means of swap moves, and up to translating the floating edges
with slide moves, we can permute the vectors x1,...,X, as we want. Once we are able to permute
them as we want, we can also perform Nielsen moves among them (since we are able, for example,
to change a floating edge by slide over another edge), provided that we keep all components in
supp,.(Q) of all x; big enough, so that the graph remains in normal form.
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By Proposition we have that x1,...X, generate ling(Q). But ling(Q) is isomorphic to
either Z* or Z/27 @ Z* for some k € N. Thus in this case all r-tuples of generators for ling(Q) are
Nielsen equivalent to each other up to permutation. Therefore, using the results of Appendix [B]
we can perform moves to make Xp,...,X, to be the same in (T',¢) and (A, ¢).

Now, the p; which are minimal points are already the same in (T',4) and (A, ¢), by assumption
(up to performing some edge sign-change). The p; which are non-minimal can be made to be the
same by slides and self-slides (Lemma and permutations of x1,...,X,, since we are assuming
that there are the same number of edges in each conjugacy class in (T, %) and (A, ¢).

Finally, we can change the endpoints ¢y by any combination of x1,...,x, (since we can slide
cp over at least one x;, and we can permute X1,...,X, as we want in any moment). Since (T, )
and (A, ¢) have the same conjugacy classes, we can arrange for the cg to be the same too.

The conclusion follows. O

5.7 Rigid vectors

Let (T',¢) be a totally reduced GBS graph with affine representation A. Suppose that (T, )
has one qe-class @ with supp,.(Q) # 0, and that (T',+) is clean. Suppose that (T',¢)) does not
have floating pieces.

Definition 5.16. A rigid cycle is a sequence of £ > 1 edges m; —— mo + W1, Mo —— M3 + Wa,
.o, My —— my + Wy with the following properties:

1. my,...,my are pairwise distinct minimal points.

2. wWi,...,wp € AT,

3. There are no distinct minimal points m,m’ such that m +wy +---+wp >m/.
For a rigid cycle we define the associated rigid vector as w =wy +---+w, € AT,

In the above hypothesis, we must have that supp(w) # 0 since (I, %) is clean. In a rigid cycle,
every vertex of every edge lies above a unique minimal point. In fact, if m;11 +w; > m’ for some
minimal point m/, then in particular m;y; +w > m’, and by Item [3| of Definition this implies
that m’ = m;,1. In particular, an edge can be part of at most one rigid cycle. Note also that
w € ling.(Q), since we can, for example, slide one edge of the rigid cycle along the others to obtain
an edge m — m + w.

Definition 5.17. Define the set of rigid vectors of (I',¢) as the multi-set of the vectors w
associated with the rigid cycles of (T',4).

Proposition 5.18. The multi-set of rigid vectors of (I',) is invariant under edge sign-changes,
slides, connections.

Proof. Immediate check with the definitions. O

5.8 GBS graphs with no floating pieces

Let (T',¢) be a totally reduced GBS graph with affine representation A. Suppose that (T, )
has one qc-class @ with supp,.(Q) # 0, and that (T',+) is clean. Suppose that (I',¢)) does not
have floating pieces.

We denote with M the finite set of minimal points of (). This is partitioned into the non-empty
sets Mp for F € V(F(Q)), according to which family a given minimal point belongs. We give
an orientation to each edge of A: we say that e is the oriented edge of a pair e,e € E(A) if «(e)
is a minimal point. Note that exactly one of e, is the oriented edge. Since (I',%)) is clean and
does not have floating pieces, we have a bijection between the set of oriented edges and M: the
oriented edge e corresponds to the minimal point ¢(e) € M. Recall that E(F(Q)) = E(A), and in
particular F(Q) is an oriented graph. We fix a family Fy € V(F(Q)), which will play the role of
basepoint.

Choose a maximal tree T for F(Q), and let tq,...,¢, the oriented edges in T. Let R =
{r1,...,r;} be the multi-set of rigid vectors as in Definition For ¢ = 1,...,k, choose an
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oriented edge e; in the rigid cycle corresponding to r;, and such that e; does not belong to T.
Note that such an e; exists, since the rigid cycle is a cycle in F(Q); note that distinct rigid cycles
will give distinct edges, as they have no edges in common. Call f1,..., fy the remaining oriented
edges. This means that ey,...,ex, f1,..., fe,t1,...,tp is a list of all the oriented edges of F(Q),
each appearing exactly once. In particular M = {c(e1),...,t(ex),t(f1), -, t(fe),e(t1), ..., e(tn)}

For ¢ = 1,...,¢ we consider the path o; which goes through f; and then back to the starting
point through the maximal tree T. For ¢ = 1,...,¢ we define x; = gg(0;) + (R) € % We
consider the tree T" with base-point Fj: every edge has an orientation, which is either pointing
towards Fy, or away from Fy. We call € € N the number of edges pointing away from Fp.

We define the map © : M — R U hné‘ﬁgQ) U (V(F(Q))\ {Fo}) as follows:

1. O(u(e;)) =r; e Rfori=1,... k.
O(u(fi) = x; € el for j=1,...,¢.
3. ©((t;)) € V(F(Q)) \ {Fo} is defined as follows. If ¢; is pointing towards Fy, we set O(c(t;))
as the family of ¢(¢;). If ¢; is pointing away from Fy, we set O(¢(¢;)) as the family of 7(¢;).

€

We define the map (—1)¢© by pre-composing © with any permutation of M of sign (—1)¢.

Definition 5.19. We define the assignment map of (I',¢) as the map (—1)°O, considered up
to

1. Nielsen equivalence of x1,...,Xy in the group %.

2. Pre-composing © with an even permutation of M.

The above construction can look artificial, but it becomes more natural if one thinks about the
normal form introduced below, see Definition [5.23] We encourage the reader to think like this: for
an oriented edge e with ¢(e) = m minimal, the map ©(m) is telling us what the role of the edge e
in the given configuration is. If ©(m) = r € R, then you should imagine that e is hosting the rigid

vector r (as if e would be m — m +1r). If O(m) = x € %, then you should imagine that
e is hosting a “very long” vector x (as if e would be m —— m + x); here “very long” means that

it is able to play with he others through slide moves). If ©(m) = F € V(F(Q)) \ {Fo}, then you
should imagine that e is the edge connecting F' to the basepoint Fy (as if e would be connecting a
minimal point in F' to a non-minimal point in Fp). And in fact, when (T',4)) is in the normal form
of Definition [5.23] this is exactly what the map © is encoding.

Lemma 5.20. A different choice of the edges in the rigid cycles produces the same assignment
map.

Proof. Let v be a rigid cycle with rigid vector r, let T be a maximal tree, and let s1,ss,..., s, be
the oriented edges of v that do not belong to T'.
For i =1,...,k, we call g; the path that crosses s; and then closes through the maximal tree

T, and let x; = gg(0;) + (R) € ling.(Q)/(R). The key observation is that x; + - -+ +x; = r.

It follows that, if we choose s; to be the edge of the rigid cycle, then we must set ©(¢(s;)) =r
and O(u(s;)) = x; for j # i. The other values of © are independent of ¢. In particular, a different
choice of 7 will produce the same map © up to even permutation and Nielsen equivalence. O

Lemma 5.21. A different choice of maximal tree T' produces the same assignment map.

Proof. Take an embedded cycle v in F(Q), and call x = ¢g(y) + (R) € ling(Q)/(R). Suppose
that v = ...s'...s0%... for some oriented edges s, s> and for some 7;,72 = +1. Suppose that
some max1mal tree 71 contains all of v except s2, and let To be the maximal tree obtained from
T by adding so and removing s;. Let ©1, ©5 be the maps associated with T7,Ts respectively.

For an edge e not appearing in 7y, we have two cases. If e € T} then e € Ty and @1( (e)) =
O2(i(e)) and the contribution to € does not change. If e & T} then e & Ty and O4(t(e)) — Oz(e(e))
is 0 or +x.

For the edges e appearing in v, the values of ©1, 05 will be £x and Fi, Fy, ..., F,. (the vertices

appearing in 7y, except the one nearest to Fp), in some order. When changing from 77 from 75,
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these values get permuted (the permutation consisting of a single cycle), the contributions to e
might change, and +x might change sign. It is a routine check that these changes compensate
each other, i.e. £x changes sign if and only if the sign of the permutation of the values, plus the
sum of the contributions to €, is negative.

Thus we can change from 77 to T without affecting the assignment map. But with changes of
this kind, we can go from any tree to any other tree. The conclusion follows. O

Lemma 5.22. The assignment map of (I',1) is invariant under edge sign-changes, slides, con-
nections.

Proof. Immediate check with the definitions (using Lemma and Lemma [5.21]). O

We now define a normal form for GBS graphs with no floating pieces. Fix a non-individual
family Fy € V(F(Q)). For every family F' # F, we fix a minimal point mp in that family.

Definition 5.23 (Normal form for GBSs with no floating pieces). Suppose that (T',) has full-
support gaps. We say that (I',4) is in normal form (with respect to the non-individual family Fy
and the minimal points {mr}rxr,) if the following conditions hold:

1. For every family F # Fy and for the minimal point mp, take the unique edge e with 1(e) =
mp. We require that 7(e) is in Fy, and lies above all minimal points of Fy with full-support

gap-

2. For every family F and for every minimal point m in F (except possibly mp), take the unique
edge e with 1(e) = m. We require that 7(e) is in F. If e is not a rigid cycle, we also require
that 7(e) lies above all minimal points of F with full-support gap.

Proposition 5.24. Suppose that (I',v) has full-support gaps. Then, for every non-individual
family Fy and minimal points {mr}rsr,, we can bring (I',1) to normal form by means of a
sequence of slides, swaps, connections.

Proof. For every minimal point m, let e,, be the unique edge such that c(e,,) = m. We say that
em 18 positive if T(e,,) is above m with full-support gap.

The first three steps in the proof of Proposition [5.14] apply here. Therefore, we can assume
that every edge is positive, except for the edges e, for F # Fy, for which 7(e,,) lies in Fy and
above all minimal points of Fy with full-support gap.

Let F' # Iy be a family containing at least two minimal points m, mg, and let mq, mo be two

minimal points in Fy. Then we have edges m; — m; +x and mg — mo+y and m — m+z
and mp —— p with p above both mq,mo. Then we can perform connections to change
m; — m; +X mp ——¢q mp ——m; + 2z
my —— Mo +Yy . my —— My +Yy . mg —— Mo +Yy
mto mto
m—m-+z m—m-+z m—p'
mgp —p mp — mp +X mp — Mmp +X
mi; ——mq +z mi; —— mq + z
. my — ¢’ . mg —— Mg + X
mto into
m-—m-+y m-—m-+y
mp —— mp + X mp — p”

ultimately getting a cyclic permutation of x,y,z (here p,p’,p” lie in Fy above mq,ms, while ¢, ¢’
lie in F above m,mp).

Now suppose that some positive edge e, given by m —— m +w is not a rigid edge, but m +w
does not lie above all minimal points in its family. Then we can find two minimal points m’, m”
such that m’ +w > m”. By means of cyclic permutations as explained above, we can bring w to
Fy, and then to m’, so that we end up with an edge m’ —— m’ + w. Using that m’ +w > m”,
we can perform slides and make all components of w in supqu(Q) very big. Finally, by means of
other cyclic permutations, we bring w back to m.

By reiterating this procedure, we eventually obtain a GBS graph in normal form, as desired. [
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Proposition 5.25. Suppose that (T, 4¢), (A, $) are in normal form. Suppose that the following
conditions hold:

1. (T',9), (A, @) have the same linear invariants.
2. (T,v), (A, ¢) have the same multi-set of rigid edges and the same assignment map.

3. Either Fy contains at least three minimal points, or there is at least another non-individual
family besides Fy.

Then there is a sequence of edge sign-changes, slides, swaps, connections going from one to the
other.

Proof. Up to edge sign-changes, we can assume that the minimal points are exactly the same.

As in the proof of Proposition we can perform cyclic permutations on the vectors at the
edges, by means of connections. In particular, we can assume that all rigid edges are at the same
minimal points in (A, ¢) as in (I, 9).

If we have a (possibly rigid) edge m —— m + x and a non-rigid edge m’ — m’ + y, then
with a sequence of slides we can change y into y + x, provided that all components in supqu(Q)
of y remain large enough. Now we deal with two cases: if there is at least one rigid edge, then
we want to use Proposition [B4} if there is no rigid edge, then by hypothesis there are at least 3
positive vectors, and we can use Theorem In both cases, since (I, 4¢), (A, ¢) have the same
linear invariant, we can obtain that the values of x are the same in (A, ¢) as in (I, ¥).

Finally, for F' # Fy and for the edge mp —— cp, we can change cg to any other point in the
same conjugacy class, by means of slide moves (and connections, if we would need to add/subtract
some vector which lies in F'). In particular, we can set also these to be the same in (A, ¢) as in
(T',¢). The conclusion follows. O

5.9 The algorithm

Theorem 5.26. There is an algorithm that, given two GBS graph (T,v), (A, ¢) with one qc-
class and full-support gaps, decides whether there is a sequence of edge sign-changes, slides, swaps,
connections going from one to the other. In case such a sequence exists, the algorithm also computes
one such sequence.

Proof. First of all, we check that the conjugacy class @ has the same ming.(Q), supp.(Q), ling(Q)
and the same number of edges in each conjugacy class (up to edge sign-changes), otherwise by
Corollary we can not change (I',9) into (A, ¢).

If (T, 4) has floating pieces, then (A, ¢) must have floating pieces too. We make both of them
clean and we compute the linear invariant: this must be the same, otherwise there is no sequence
of moves going from one to the other. If they have the same linear invariant, then we bring both
of them in normal form as in Proposition [5.14] and then we can go from one to the other by
Proposition [5.15

If (T, %) has no floating pieces, but it has a family with at least three minimal points, or at
least two families with at least two minimal points each. Then (A, ¢) must have the same property
(as it has the same families and minimal points). We make both of them clean and we compute
the multi-set of rigid edges and the assignment map: these must be the same, otherwise there is
no sequence of moves going from one to the other. If they have the same multi-set of rigid edges
and the same assignment map, then we bring both of them in normal form as in Proposition [5.24
and then we can go from one to the other by Proposition [5.25

Finally, suppose that (T',4) has no floating pieces, and all families of (T',4) are individual,
except at most one with at most two minimal points; we call Fy such family. Note that (A, ¢)
must have the same property (as it has the same families and minimal points). In this case, we
make both (T, %) and (A, ¢) clean and F-polished for each family F' # Fy, as in Section From
now on, we only deal with sequences of moves involving GBS graphs which are F-polished for each

F # Fy.
For every family F' # F, we take the unique minimal point mg in that family, and the unique
edge mp —— cp with cp € Fyy, and we observe that cp can be changed to any other point in the
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same conjugacy class, by means of slide moves only; in particular, in any moment, we can arrange
them to be the same in (T',4) as in (A, ¢). Let (I, 4), (A’, ¢') be the GBS graphs obtained from
(T, ), (A, ¢) respectively, by removing all edges with vertices outside Fy. Then there is a sequence
of moves going from (T, ) to (A, ¢) if and only if there is a sequence of moves going from (I”,v’)
to (A’,¢"). But (I, 9"), (A, ¢') are GBS graphs with one vertex and at most two edges each. The
conclusion thus follows from [ACRK25D]. O

Corollary 5.27. There is an algorithm that, given two GBS graph (T',v), (A, ¢) with one qc-class
and full-support gaps, decides whether the corresponding GBS groups are isomorphic or not. In
case they are, the algorithm also computes a sequence of sign-changes, inductions, slides, swaps,
connections going from (T',) to (A, ¢).

Proof. By Theorem [5.26] and since vertex sign-changes can be guessed in finitely many ways, we
only have to deal with induction.

But if (T', ) allows for induction, is totally reduced, and has one qec-class, then it must have
just one vertex, and by means of a sequence of moves we can make it into a controlled GBS graph.
In this case, the statement follows from [ACRK25a]. O

5.10 Examples

As usual, in the examples we use A = ZPT%) | omitting the Z/27 summand.

Ezxample 5.28. In Figure we can see two GBS graphs and the corresponding affine represen-
tations. Note that they have the same linear invariants (i.e. same conjugacy classes and same
number of edges in each conjugacy class).

In this case, the invariant distinguishing them is the Nielsen equivalence class of the pair of
vectors. The affine representations of the two GBS graphs are

ml—m1+(2,1) and ml—m1+(1,2)
mg—m2+(1,2) mg—m2+(2,1)

respectively, where m; = (1,0) and my = (0, 1), and we put the two vectors as columns in the two

matrices
2 1 q 1 2
1 2 an 2 1

respectively. The determinants of the matrix tells us the Nielsen equivalence class of the pair of
vectors, and is thus an isomorphism invariant. The first matrix has determinant +3, while the
second has determinant —3. Therefore the two groups are not isomorphic.

Ezample 5.29. Consider the three GBS graphs (I'1,41), (T2, 92), (s, 13) as in Figure with
affine representations A1, Ao, Az respectively. It is easy to see that the three GBS graphs have the
same linear invariants.

There is a quasi-conjugacy class P satisfying: ming.(P) = {(3,0,0)}, supp,.(P) = {2} and
ling.(P) = ((7,0,0)); this quasi-conjugacy class contains one edge (3,0,0) — (3,0,0) + v, with
v = (7,0,0), that can not be changed along any sequence of slides, swaps, connections (see Corol-
lary .

There is a quasi-conjugacy class @ satisfying: min,.(Q) = {(2,1,0),(1,2,0),(0,3,0)},
supp,.(Q) = {2,3,5} and ling.(Q) = ((1,0,0),(0,1,0),(0,0,1)). The three minimal points are
also the three minimal regions My = {(2,1,0)} and My = {(1,2,0)} and M3 = {(0,3,0)}. This
quasi-conjugacy class contains three edges, e; given by (2,1,0) — (2,1,0) 4+ x1, and es given by
(1,2,0) — (1,2,0) + x2, and e3 given by (0,3,0) — (0, 3,0) + x3, for some x1, X2, x3 € A which
are different in the three examples.

The question is: which of these GBS graphs represent groups isomorphic to each other? We
can use Theorem to rearrange the three elements X1, X2, X3 as we want (and relative to v),
provided that we check two conditions. The first condition, is that the components of x;,x2,x3
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must remain big enough. The second condition is that we must preserve the Nielsen equivalence
class of the (ordered) triple [x1], [X2], [x3] in the abelian group

(x1,%2,%x3,v)  {(1,0,0),(0,1,0),(0,0,1))

& (7.0.0)

By Proposition we need to look at the determinant of the corresponding matrix modulo 7.
The three matrices for (I'1, 1), (T2, 1¥2), (I's, ¥3) are given by

~7?®Z)7L.

and and

S N W
= Ot N
Tt N
SN
= O
(AR
[S2 BN N
= ot O
(S e

respectively, and have determinants congruent to 1,2,3 modulo 7 respectively. So Theorem
does not allow us to jump from one to the other.

And in fact the three groups are pairwise non-isomorphic. Suppose that we start from one of
(T1,%1), (T2,1%2), (T3, ¢3) and we perform a sequence of slides, swaps, connections. By Lemma
in each moment there must be at least one endpoint of some edge at (2, 1,0), one at (1,2,0),
and one at (0,3,0). We would like to deduce that the configuration can be written uniquely as

(2,1,0) — (2,1,0) + %,
(17270) - (17270) + X2
(0a370) - (0a370) + X3

for some x;,X2,x3 € A. This is true, even though one has to be careful in to the degenerate
cases where some edge connects two minimal regions. To be precise, there must be some edge
with a vertex in {(2,1,0),(1,2,0), (0,3,0)} and the other vertex outside; without loss of generality,
assume it has an vertex in (0,3,0). Then we call such edge (0,3,0) — (0,3,0) + x3, uniquely
determining x3. Now there must be some edge with one vertex in {(2,1,0),(1,2,0)} and the other
vertex outside; without loss of generality, assume it has a vertex in (1,2,0). Then we call such edge
(1,2,0) — (1,2,0) + x2, uniquely determining xo. Finally, with a similar reasoning we uniquely
determine x7.

Now we write the three vectors xi,Xs,x3 as columns of a 3 X 3 matrix, and we compute the
determinant modulo 7. This is invariant by external slides (since the determinant is taken modulo
7), by internal slides (which correspond to column operations on the matrix), by connections (which
correspond to exchanging two columns, changing the sign of one column, and then performing a
few column operation), and swaps can never be applied. It follows that the determinant modulo
7 must be the same along any sequence of slides, swaps, connections. Since in the three graphs
(T'1,%1), (T2,%2), (T's, ¢3) the determinant has different values, there is no sequence of slides, swaps,
connections going from one of them to another. Finally, one easily check that sign-changes can not
help finding an isomorphism in this case. Induction does not apply to these examples.

So these are three GBS graphs which exhibit a very similar behavior - same conjugacy classes,
same number of edges in each conjugacy class - but are not isomorphic; and the isomorphism
problem in this case is decided by a finer invariant, which is this determinant modulo 7.

In this specific case, if the determinant modulo 7 would have been the same, then we would
have immediately been able to provide an isomorphism using Theorem [B:I] In general, one also
has to be careful about rigid vectors.

Ezample 5.30. Counsider a GBS graph (T',v) with affine representation A as in Figure This
means that I" has three vertices v1, v, v3 and set of primes P(T', ) containing two prime numbers.
The affine representation A consists of three copies A, AT Aj3 of N2, and of edges

(v1, (11,0)) — (v1,(21,8))
(v1, (0,11)) — (v1,(14,9))
(v2, (10,1)) — (v, (4,10))
(va, (0,12)) — (v1, (15, 15))
(v3,(2,6)) — (v2, (15,4))



First, we compute the linear invariants of (I',¢). It is easy to check that all the edges belong to a
common quasi-conjugacy class @), with five minimal points m; = (v1, (11,0)) and my = (v1, (0, 11))
and mz = (vg,(10,1)) and my = (vs,(0,12)) and ms = (vs,(2,6)). A computation shows that
supp,.(Q) = P(I', ) and ling.(Q) = ((1,0),(0,1)), and in particular @ is also a conjugacy class.
With this notation, A can be rewritten as

m; — my + (10, 8)
my; — my + (14,9)
m3; — ms + (2,5)
my — my + (15,4)
m; — mg3 + (4,3)

The graph of families F(Q) coincides with ' in this case. We note that (T, ) is already clean,
and has no floating pieces, so we can assign an orientation to each edge, in such a way that edges
are always oriented going out of minimal points. We can see that (I',4) has a unique rigid cycle,
given by the edges ms — m3 + (4,3) and mz — mj + (2,5), with corresponding rigid vector

= (7,7).

We now bring (I',) to normal form. First, we maximize the number of positive edges, by

performing a slide and a connection, to get the configuration

m; — m; + (10,8)

(
my — my + (13, 14)
m3; — m;3 + (7,7)
m4—m4—|—(1 )

(4

m; — mg3 + (4,3)

as in Figure[20] This is already near to being a normal form, as all vectors are positive, except the
two going from A}, Af to AJ . However, the two positive vectors at my, my, and the edge at
mj, have an endpoint which is not high enough. Thus we have to perform further manipulations

to reach, for example, the configuration of Figure 21} given by

m; — my + (7,7)

my; — my + (13,14)

m3 — mj3 + (12, 13)

my — my + (17, 15)
(

ms; — my + (20,5)

where the rigid vector has been moved at mj, and all the other endpoints are sufficiently high

above the minimal points.

For the normal form of Figure 21 the linear invariant (—1)¢© : M — {r} U lch L1 {vy, vs) is
given by O(m;) = r and ©(my) = v; and O(m3) = (12,13) and O(m4) = (17,15) and O(ms) = vs.
This means that the minimal points msy, ms5 are hosting the edges connecting A;*NA‘Ir to A+

respectively, the minimal point m; is hosting the rigid vector r, and the minimal points mg, my
are hosting the vectors (12,13), (17,15) of the abelian group % >~ 7 @ Z/7Z. Note that the

couple (12, 13), (17,15) is Nielsen equivalent to the couple (1,0), (0, 1) in the abelian group hn‘{#

If in Figure[21] we substitute the edge my — my+(17, 15) with my — my+(17, 14) while leav-
ing the others unchanged, then we obtain a non-isomorphic GBS group. In fact, (12,13), (17,14) is
Nielsen equivalent to (3,0), (0, 1), and the matrix of change of basis from (1, 0), (0, 1) to (3,0), (0,1)
has determinant = 3 # 1 modulo 7. In fact, in Z @ Z/7Z there are exactly 6 Nielsen equivalence
classes of couples of generators, two couples being Nielsen equivalent if and only if the matrix of
change of basis has determinant = 1 mod 7 (see Proposition. Fixed the linear invariants and
the multiset of rigid vectors R = {r}, there are exactly 6 isomorphism classes of GBS groups,
corresponding to the 6 possible values of this determinant modulo 7.
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Ezample 5.31. Counsider a GBS graph (T',v) with affine representation A as in Figure This
means that I' has one vertex and set of primes P(I',¢) with two prime numbers. The affine
representation A consists of a single copy AT = N2 containing four edges

m; — my + (2,3)
mo — mo + (0,2)
ms — ms + (6,2)
my — my + (4,3)

where m; = (6,0) and my = (3,2) and m3 = (2,5) and my = (0,6). These four edges all
belong to a common quasi-conjugacy class @, characterized by ming.(Q) = {m;, ms, m3, m4} and
supp,.(Q) = P(T', ) and ling.(Q) = ((2,0),(0,1)). The conjugacy class of m;, m3, my contains
three edges while the conjugacy class of ms contains one edge.

This GBS graph has one qc-class and no floating pieces. Note however that it does not have
full-support gaps. We can still look for rigid cycles as in Definition [5.16] The only reasonable
candidate to be a rigid vector would be r = (0,2), with rigid cycle my —— my + r. However, we
can find minimal points m # m’ such that m +w > m/, as for example we have that m; +r > mjy
and mg +r > my. So the edge my —— my + r does not satisfy the conditions of Definition [5.16
and is thus not a rigid cycle.

We now try to bring the GBS in normal form. It is easy to see that the other three edges can
be made very long by means of slide moves. It remains however unclear how to change the edge
my; — msy +r. In fact, swap moves do not apply here, and changing it by slide or by connection
would require some other vertex of some other edge to be of the form ms + (a,0) for some a € N.
But this would imply that the conjugacy class of ms would contain more that one edge, and this
is impossible, since the conjugacy class of ms contains only one edge. This means that no slide,
swap, connection can ever change the edge my —— my +r.

This shows that the hypothesis of being full-support gaps is really necessary for Proposition|5.24
as otherwise one might encounter obstructions when trying to bring the GBS graph to normal form.
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A Nielsen equivalence in finitely generated abelian groups

We consider elements of Z™ as column vectors. We denote with M,,x,(Z) the set of matrices
with n rows and k columns and integer coefficients. For M € M,,«x(Z) we denote with sz the
integer number in the i-th row and j-th column of M, for i =1,...,n and j =1,...,k; we denote
with span(M) the subgroup of Z™ generated by the columns of M. A column operation on
a matrix consists of choosing a column and adding or subtracting it from another column. A
(column) reordering operation consists of interchanging two columns of the matrix. Notice
that column and column reordering operations do not change span(M). A row operation consists
of choosing a row and adding or subtracting it from another row. Row operations correspond to
changing basis for the free abelian group Z".

Smith normal form

Definition A.1. A matriz S € Muxi(Z) is in Smith normal form if it satisfies the following
conditions:

1. Sf = 0 whenever i # j.

2. 8:>0 fori=1,...,m where m = min{n, k}.

3. We have Sfill ‘ Sé foralli=1,...,m—1.

Every matrix is equivalent, up to row and column operations and reordering operations, to
a unique matrix in Smith normal form. An interesting feature is that the integers S} can be
computed directly from the initial matrix, as follows. For M € M,,«(Z), define Dy(M) > 0 as

the greatest common divisor of all the determinants of the ¢ x £ minors of M, for 1 < £ < m where
m = min{n, k}. Notice that, if M has rank r, then Dy(M) = 0 if and only if £ > r + 1.

Lemma A.2. Let M € M, «(Z) be a matriz of rank r. Let S be the unique matriz in Smith
normal form obtained from M by means of row and column operations. Then we have the following:

1. Dy(M) | Da(M) | ... | Dp(M), where m = min{n, k}.

2. 88 =Dp1-i(M)=0fori=1,...,m—r.

3. S} = Dyy1-i(M)/Dpy_i(M) fori=m—r+1,...,m—1.
4. Sy =D1(M).

Proof. Tt is immediate to notice that Dy(M) is invariant under row and column operations, as well
as column swap operation. But for a matrix in Smith normal the statement holds, so it holds for
all matrices. O
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Finitely generated abelian groups

Every finitely generated abelian group is isomorphic to
2/ ... L)AL

for unique integers numbers n,ds,...,d, > 0 satisfying 1 # d,, | dpn—1 | ‘ dy. Notice that some
d; can be equal to 0, producing Z summands.

Lemma A.3. Let M € My,xk(Z). Let S € Myuxi(Z) be the Smith normal form of M. Then
Z" [ span(M) is isomorphic to Z]/d1Z ® ... D Z/d,/Z where

1. 0/ <min{n, k} is the mazimum integer such that ST # 1.
2.d;=S! fori=1,...,n.

Proof. Column and reordering operations do not change span(M), and in particular they do not
change the quotient Z" /span(M). Row operations correspond to changing basis for Z", so they do
not change the isomorphism type of Z™/span(M). Thus we have that Z™/span(M) is isomorphic
to Z™ /span(S). The conclusion follows. O

Nielsen equivalence in finitely generated abelian groups

Let A be a finitely generated abelian group. Let (wq, ..., wy) be an ordered k-tuple of elements
of A: a Nielsen move on (ws,...,wy) is any operation that consists of the substitution w; with
w; +w; or with w; — wj, for some j # ¢. Two ordered k-tuples are Nielsen equivalent if there
is a sequence of Nielsen moves going from one to the other. Our aim in this section is to classify
the k-tuples of generators for A up to Nielsen equivalence (we ignore k-tuples that do not generate
the whole group A, as they would require us to change the ambient group we are working in).

Fix an isomorphism

A=Z/d\Z&L)dbT & ... & TL)dn7T

for integers n,dy,...,d, > 0 with 1 # d, ’ dp—1 ‘ | di. Then we can represent elements of
A as column vectors with n entries, where the i-th entry is an element of Z/d;Z for i = 1,...,n.
We represent an ordered k-tuple (wq, ..., wx) as a matrix M = M (wy, ..., wy) with n rows and k
columns. Nielsen moves correspond to column operations on the matrix M.

Lemma A.4. The group A=Z/d1Z & ... B Z/d,Z can not be generated by less than n elements.

Proof. Take a prime p | dy,. Consider the surjective projection map from Z/d1Z & ... S Z/d,Z to
(Z/pZ)™. But (Z/pZ)™ can not be generated by less than n elements. O

Proposition A.5. For every k > n+1, every two ordered k-tuples of generators for A are Nielsen
equivalent. Two ordered n-tuples of generators for A are Nielsen equivalent if and only if the
corresponding matrices have the same determinant modulo d,.

Proof. Let (w1, ...,wy) and (uy,...,ux) be k-tuples of generators for A and let M, N € M, «x(Z)
be the matrices whose columns represent ws,...,wg and uq,...,u, respectively. If & = n and
wi, ..., wg and uy,...,ur are Nielsen equivalent, then there must be a sequence of columns oper-
ations going from M to N, and in particular the two matrices must have the same determinant.

We look at the first row of M, and using column operations we perform the Euclidean algorithm;
we obtain a new matrix M{ # 0 and M{] =0 for j =2,...,k. But since wy, ..., wy generate the
whole group, we must have that M{ is coprime with d;. We add d; to M? (we can, since elements
of the first row are elements of Z/d,Z), and then we perform the Euclidean algorithm again,
obtaining a new matrix with M{ =1 and M{ =0 for j =2,... k.

We reiterate the same reasoning by induction. If & > n + 1 we obtain a matrix with M} = 1

fort=1,...,n and MZ = 0 for j # i. Performing the same procedure on N we obtain the same
matrix, and in particular there is a sequence of column operations going from M to N, and thus
wi,...,wy is Nielsen equivalent to uj,...,u;. If & = n, we obtain a matrix with M} = 1 for

t=1,...,n—1and M invertible modulo d,, and MZ = 0 for j # n. Notice that the determinant
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of M modulo d, is an invariant under column operations, and for the matrix reduced in this
form it is equal to M;'. If the determinant of M was equal to the one of IV, then performing the
same procedure on N we obtain the same matrix, and in particular there is a sequence of column
operations going from M to N, and thus (ws,...,w;) is Nielsen equivalent to (uq,...,ux). O

We will also need the following two lemmas.

Lemma A.6. Let a € A be an element represented by a vector (ai,...,a,), and suppose that
ged(ay, ... an—1,a,) = 1. Let (a,ws,...,wk), (a,us,...,ux) be Nielsen equivalent k-tuples of
generators for A with k > n+ 1. Then ([wa],...,[wk]), ([ug],...,[ur]) are Nielsen equivalent

(k — 1)-tuples of generators for A/(a).

Proof. Let R € My,xn(Z) be the matrix given by R: = d; for i = 1,...,n and Rf =0 for j # 1.
We have that A = Z™/span(R). Let R’ be the matrix obtained from R by adding an extra column,
equal to (ay,...,a,). Then A/{a) = Z"/span(R’'). Since ged(ay,...,an—1) = 1, we see that
Dy(R') =1 and D3(R') = d,, # 1. In particular, by Lemmas and we have that the
minimum number of generators for A/{a) is n — 1. But then by Proposition|A.5] the (k —1)-tuples

of generators ([wa], ..., [wg]), ([ua],...,[ux]) for A/{a) are Nielsen equivalent, since k —1>n. 0O
Lemma A.7. Let a € A be an element represented by a vector (ai,...,ay,), and suppose that
ged(ay, ... an—1) = 1. Let (a,wa, ..., wy), (a,us,...,u,) be Nielsen equivalent n-tuples of genera-
tors for A. Then ([wa], ..., [wn]), ([ua],...,[us]) are Nielsen equivalent (n—1)-tuples of generators
for A/{a).

Proof. Let R € My,»,(Z) be the matrix given by R! = d; for i = 1,...,n and Rg = 0 for j # 1.
We have that A = Z" /span(R). Let also M, N € M,,«;(Z) be matrices whose columns represent
a,ws, ..., w, and a,us, ..., u, respectively. By Proposition [AT5] M and N must have the same
determinant modulo d,,.

Let R’ be the matrix obtained from R by adding an extra column, equal to the first column
of M and of N. We have that A/(a) = Z"/span(R’) and D;(R’) = 1 and Dy(R') = d,, (since
ged(aq,...,an—1) = 1). Thus, by Proposition we only need to check that the matrices
representing ([wa], ..., [wy]) and ([ug], ..., [u,]) have the same determinant modulo d,,.

We perform row operations at the same time on R, M, N, running the Euclidean algorithm on
the first column of M (which is also the first column on N). We obtain matrices R, M, N such that
the first column of M (which is also the first column of N) is equal to (1,0,...,0,0). Notice that
the determinant of M is the same as the one of N modulo d,,, since row operations do not change
the determinant. Since row operations correspond to changing basis of Z", we have an isomorphism
A = 7" /span(R), with the two matrices M and N representing the two k-tuples a, ws, ..., w, and
a,Ug, ..., U,. Let " be the minor of M obtained by canceling the first row and the first column
of M, and define N analogously; let also R be the matrix obtained from & by removing the first
row. The isomorphism A = Z" /span(R) induces an isomorphism A/{(a) = 7"~/ span(ﬁ/l) and the

matrices M and NL represent the (n — 1)-tuples ([wa],...,[w,]) and ([ug],...,[un]). But since
the first column of M and of N is (1,0,...,0) and M, N have the same determinant modulo d,,
it follows that M and N have the same determinant modulo d,,. The conclusion follows. O

B Nielsen equivalence for big vectors

Fix a free abelian group Z". Let (w1,...,wy) be an ordered k-tuple of vectors of Z™. For an
integer M > 1 we say that an ordered k-tuple (wq,...,wy) is M-big if each component of each
of wy,...,wk is > M. Our aim is to classify the M-big ordered k-tuples of vectors up to Nielsen
moves. This means that, given two M-big ordered k-tuples, we want to know whether there is a
sequence of Nielsen moves that goes from one to the other, and such that all the k-tuples that we
write along the sequence are M-big.

We are going to need also a relative version of the same problem, that we now introduce. Let
v1,...,v be vectors of Z™ and let (wq,...,w) be an ordered k-tuple of vectors of Z™. A Nielsen
move relative to vy,...,vp, also called relative Nielsen move when there is no ambiguity,

43



is any operation that consists of substituting w; with w; + v; or w; — v; for some ¢ € {1,...,k}
and j € {1,...,h}. Fixed vectors vy,..., v, we want to classify the M-big ordered k-tuples up to
Nielsen moves and relative Nielsen moves. This means that, given two M-big ordered k-tuples, we
want to know whether there is a sequence of Nielsen moves and relative Nielsen moves that goes
from one to the other, and such that all the k-tuples that we write along the sequence are M-big.

Given vectors vy, ...,v, € Z™ and an ordered k-tuple (wq,...,wy), we define the finitely gen-
erated abelian group

A(wy, .. W01, -y ) = (U1, Oy Wy e W) (U1, o, UR)-

It is immediate to see that A is invariant if we change the k-tuple by Nielsen moves and relative

Nielsen moves. Moreover, we can look at the ordered k-tuple of generators ([wi],...,[ws]) for
the abelian group A, and we notice that Nielsen moves on (wq,...,wg) correspond to Nielsen
moves on ([wi], ..., [wg]), while relative Nielsen moves on (w1, ...,wy) correspond to the identity
on ([wi], ..., [wg]).

The problem of classification of M-big ordered k-tuples of vectors up to Nielsen moves and
relative Nielsen moves, and the problem of classification of ordered k-tuples of generators for A
up to Nielsen equivalence, are strictly related. In fact, we will prove that they are equivalent for
k > 3, regardless of M. The main result of Appendix [B]is the following theorem:

Theorem B.1. Let vi,...,v, € Z" and let M > 1. Let k > 3 and let (wn,...,ws), (W, ..., w},)
be M-big ordered k-tuples. Then the following are equivalent:

1. There is a sequence of Nielsen moves and Nielsen moves relative to vy,...,v, going from
(wi,...,wg) to (W,...,w}) such that all the k-tuples that we write along the sequence are
M -big.

2. We have that A(wy, ..., wg;v1,...,0p) = AWy, ..., w;v1,...,0) = A and the two ordered
k-tuples of generators (Jwn], ..., [wg]), ([wi], ..., [w}]) are Nielsen equivalent in A.

Preliminary results

We provide a couple of preliminary lemmas, that will be useful in what follows. Fix n > 1 and
vectors vy, ..., v, in Z™; fix also an integer M > 1.

Lemma B.2. Let k > 1 and let (w1,...,wg) be an M-big ordered k-tuple. Then for every
even permutation o of {1,...,k} there is a sequence of Nielsen moves going from (wi,...,wy)
to (We(1), -+ Wo(ky) such that all the k-tuples that we write along the sequence are M-big.

Proof. Consider the sequence of Nielsen moves
(wl,wg,wg) —>(w1,w2 + ws, w3) — (’w1, wo + w3, w3 + wl) —
— (w1 + wa + w3, w2 + w3, w3 + w1) = (W2, w2 + ws, W3 +wWw1) =
—(wa, w3, w3 +w1) — (w2, w3, wr)

and notice that in the same way we can obtain any permutation which is a 3-cycle. But 3-cycles
generate all even permutations; the conclusion follows. O

Lemma B.3. Let k > 2 and let (w1, wa, ..., wg), (W), wa,...,wg) be M-big ordered couples. Sup-
pose that w] = wy + Agwsy + - -+ + A\gwg + p1v1 + -+ + ppop for some Ao,y ..o Mgy 1, -, fbh € Z.
Then there is a sequence of Nielsen moves and relative Nielsen moves going from (wy,ws, ..., wg)
to (w),ws, ..., wy) such that all the k-tuples that we write along the sequence are M -big.

Proof. We choose an arbitrary positive integer C' which is much bigger than all the components of
W, ..., W, V1,...,v, and than all of Ao, ..., Ag, 1, ..., ur. We proceed as follows

(w1, wa, ..., wy) = (wy + Cwa,ws, ..., wg) — (W) + Cwa,wa, ..., wg) — (W), ws, ..., w)

where -5 denotes a finite sequence of Nielsen moves and relative Nielsen moves. It is evident that
the first and the third = can be performed in such a way that every k-tuple that we write along
the sequence is M-big. All the k-tuples that we write during the second = are M-big, provided
that C' had been chosen big enough. O
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Proposition B.4. Let k > 1 and let (w1, ..., wg), (Wi, ... ,wy,) be M-big ordered k-tuples such that
A(wy, ..., wg;v1,...,0p) = A(W, ..., w);v1,...,0,) = A. Suppose there is a vector in (vy,. .., Up)
such that all of its components are strictly positive. Then the following are equivalent:

1. There is a sequence of Nielsen moves and relative Nielsen moves going from (w1, ..., wg) to
(w,...,w),) such that all the k-tuples that we write along the sequence are M-big.
2. The ordered k-uples of generators ([wi],...,[wk]), ([wi],. .., [w}]) are Nielsen equivalent in
A.
Proof. [[]= [ Trivial.
= 1] Let v be a vector in (vy, ..., v) with all components strictly positive. For every element
[w] € A we can construct a lifting w € (w1, ..., wg,v1,...,v,) such that all the components of w

are > M in fact, we can just pick any lifting and add v repeatedly until the components become
all > M.

Suppose there is a sequence of Nielsen moves going from ([wn], ..., [wg]) to ([wi],..., [w}]) in
A. Let ([wl],...,[w}]) be such a sequence, for r = 1,..., R, so that [w}] = [w;] and [wf] = [w]] for
i=1,...,k Let w] be an M-big lifting of [w]] fori =1,...,k and r =1,..., R, and we can take
w} = w; and w* = w} fori =1,...,k. By Lemma it is possible to pass from (wf,...,w})
to (w{“7 .. ,wzﬂ) with a sequence of Nielsen moves and relative Nielsen moves. The conclusion
follows. O

Nielsen equivalence for three or more big vectors

Fix n > 1 and vectors vy, ...,v, in Z™; fix also an integer M > 1. This section is dedicated to
the proof of Theorem [B:I] The idea is to try and apply Proposition [B:4] When we do not have a
positive vector in {v1,...,v,), we essentially use one of the w;s instead. This means that, given two
M-big ordered k-tuples (w1, ..., wy), (w],...,w}), we want to manipulate them until they end up
with a common vector. The following Proposition explains how to manipulate one of the two
k-tuples in order to get a vector “almost” in common with the other, up to an integer multiple;
the next Propositions [B.7] and [B-§| are aimed at removing the integer multiple, and to make the
vector “really” in common to the k-tuples.

Proposition B.5. Let k > 3 and let (w1, ..., wg), (W,...,w}) be M-big ordered k-tuples such
that A(ws, ..., wg;v1,...,0,) = A(w],...,w;v1,...,05) = A. Then there is an M-big ordered
k-tuple (wy, ..., wy) such that:

1. There is a sequence of Nielsen moves and relative Nielsen moves going from (w1, ..., wg) to
(wy,...,wy) such that all the k-tuples that we write along the sequence are M -big.

2. We have w} = d(w) — wh) + pyvy + -+ - + ppop, for some d, 1, ..., up € Z.

Proof. Let w} = Mwy + -+ + Mgwg, + pavy + -+« + ppop, for Ay, ..o, Ag, f1, ..., pr € Z. We notice
that for ¢ # j we have the identity

Aw; + )\jwj = (/\i — )\j)wi + )\j (’LUJ‘ + wi).

For an ordered k-tuple of integers (\1,...,\x) we define a subtraction to be any operation that
consists of substituting A; with A\; —\; for some ¢ # j. We can perform any sequence of subtractions
to the k-tuple of integers (A1,...,Ag), as these are achieved by means of Nielsen moves on the k-
tuple of vectors (wy, ..., wy) that keep it M-big.

We now work on the ordered k-tuple of integers (A1,...,Ag). As k > 3, it is easy to see that by
means of subtractions we can assume that A\ < 0. We now subtract \; from each of A\q,..., Ap_1
sufficiently many times, in order to get A1, ..., Ax—1 > 0. By means of Lemma we can subtract
A from A; the right amount of times, in order to get ged(A1, ..., Ap—1) = ged(Ag, ..., Ag). We

now use subtractions on the non-negative integers Aq,..., Ax_1 in order to perform the Euclidean
algorithm (and here we need k > 3): we reduce to a situation of the type d,0,...,0, —cd for some
integers ¢,d > 1. From this we obtain d, —d, 0, ...,0, —cd and finally d, —d, 0, ..., 0. The conclusion
follows. O
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Lemma B.6. Let a,b,c € Z with b # 0. Then there is A\ € Z such that
ged(a, b, ¢) = ged(a + Ae, b).
Moreover, the same holds with X' instead of A, where X' is any element of the coset X\ + bZ.

Proof. Let p | b be a prime. If v,(c) > v,(a) then we have v,(a+ Ac) = v,(a) = min{v,(a),vp(c)}.
If v,(c) < vp(a) then we impose the condition A # 0 mod p; this implies that v,(a + Ac) = v,(c) =
min{v,(a),v,(c)}. If vy(c) = vy(a) then we write a = p*»(a’ and ¢ = p¥»(9)¢’ with o', ¢’ coprime
with p, and we impose the condition A # —a’/c¢’ mod p; this implies that v, (a+Ac) = vy(a) = vy(c).

By the Chinese reminder theorem, we can find A satisfying the above conditions for all primes
p | b. Now for every prime p that divides b we have v,(ged(a + Ac, b)) = min{vy(a + Ac), v,(b)} =
min{v,(a), vy(b),vp(c)} = vp(ged(a,b, ), and for every prime p that does not divide b we have
vp(ged(a+ Ac, b)) = 0 = v,y(ged(a, b, ¢)). It follows that ged(a+ Ac, b) = ged(a, b, ¢), as desired. [

Proposition B.7. Let k > 2 and let (wq,...,wy) be an M-big ordered k-tuple. Suppose A =
A(wy,y . W V1, 0) ZLZB LD A for some finitely generated abelian group A'. Then there is
an M-big ordered k-tuple (w1, ..., w;,) such that:

1. There is a sequence of Nielsen moves and relative Nielsen moves going from (wyq, ..., wg) to
(wh,...,w)) such that each k-tuple that we write along the sequence is M-big.

2. The first two components of [w)] € A2 Z B Z & A are coprime, and [w}] is not a proper

power.

Proof. Let [w;] be equal to the vector (a;,[;,7:) through the isomorphism A 2 Z @ Z & A/,
for i = 1,...,k and «;,0; € Z and v; € A’. Since [wy],...,[wy] generate A, we must have
a;8; — a;B; # 0 for some 4,5 € {1,...,k}. By Lemma we can reorder the vectors with an
arbitrary even permutation. Thus we can assume that

a1 — a1 # 0.

If ag = 0 then a7 # 0 (since a1 B2 — ae By # 0) and we substitute wy with wg + wq. Thus we can
assume that

042750.

By Lemma we find A > 0 such that ged(ay + Aas, a2) = ged(aq, @, a3). We substitute w;
with w; + Aws and thus we can assume ged(ag,as) = ged(ag, ag,a3). Since A can be chosen
modulo as, we can also take A in such a way that a;082; — a1 remains # 0. Reiterating the
same reasoning, we obtain ged(aq,as) = ged(ayq, ..., ax), which is 1 since [w1], ..., [wy] generate
A. Thus we can assume that

ng(al,OQ) =1.

By Lemma we find C' > 0 such that ged(a1 +Caq, a1 fo—azf1) = ged(aq, az, ag fo—azfr) = 1.
We now have that

ged(ar + Cag, a1 82 — aoffy — (a1 + Can)) =1

gcd(a1 + Cas, —042(51 + 062)) =1

ged(ay + Cag, 1 +CB2) =1

We substitute wy with w; + Cws and thus obtain that (g, 1) = 1. This also implies that the
element [w;] can not be a proper power in A. O

Proposition B.8. Let k > 3 and let (wy,...,wy) be an M-big ordered k-tuple. Suppose that
A=A(wy, ..., wg01,...,08) RLDL/dZ B A’ for some dy > 2 and A’ finitely generated abelian
group. Then there is an M-big ordered k-tuple (wi, ... ,w)) such that:

1. There is a sequence of Nielsen moves and relative Nielsen moves going from (wy, ..., wg) to
(wh,...,wy) such that each k-tuple that we write along the sequence is M-big.

2. The first two components of [w}] € AXZOZ/dZD A" are coprime, and [w}] is not a proper
power.
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Proof. Let [w;] be equal to the vector («;, 8;, ;) through the isomorphism A 2 Z & Z/dsZ @ A’
fori=1,...,kand o; € Z and 3; € Z/d>Z and ~; € A’. Let also p be a prime that divides ds.

Since [wy], ..., [wy] generate A, we must have «;8; —a;6; Z0 mod p for some i, j € {1,...,k}.
By Lemma we can reorder the vectors with an arbitrary even permutation. Thus we can
assume

a8y —azf #0 mod p.

If s =0 mod p then a; 0 mod p (since o182 — a1 Z 0 mod p) and we substitute wy with
wo + wy. Thus we can assume
as Z0 mod p.

By Lemma we find A > 0 such that ged(a; +Aas, ag) = ged(aq, ag, az). We substitute wy with
w1 + Awsz and thus we can assume ged(aq, a2) = ged(ag, ag, az). Since A can be chosen modulo
a2, which is coprime with p, we can also take A to be a multiple of p, so that a182 — as87 mod p
remains the same. Reiterating the same reasoning, we obtain ged(ay, as) = ged(ay, . . ., ag), which
is 1 since [w1], ..., [wg] generate A. Thus we can assume

ged(a, ag) = 1.

By means of the Chinese reminder theorem we find C' > 0 such that a3 + Ca; =1 mod ag and
(a3fa — agfs) + Ca1 P2 — aefr) Z0 mod p; here we are using the facts that ged(aq,p) = 1 and
ged(ag, ae) = 1 and ged(ay B2 — asf1,p) = 1. Since ged(ag,p) = 1 we can find integers e > 0 as
big as we want and such that p® =1 mod «as. Using the fact that ag + Ca; =1 mod as we are
thus able to find integers D > 0 and e > 0 such that ag + Ca; + Das = p°. We now have that

ged(p, (as3f2 — azf3) + Clar Bz — azpB)) = 1,

ged(p, (a3fB2 — apf3) + C(a1f2 — azfh) — f2(as + Car + Dag)) =1,
ged(p, —aa(f3 + Cp1 + DBa)) = 1,

ged(p, B3 + CPr + Dfs) = 1.

We substitute ws with ws + Cw; + Dwy and thus we can assume that ag = p© and (p, 83) = 1. In
particular (as, 83) = 1. The element [ws] can be a proper power in A: if [ws] = d[w], then ag = p©
implies that d ’ p¢, and (p, B3) = 1 implies that (p,d) = 1; it follows that d = +1. To conclude, we
permute (wq, we, w3) using Lemma in order to bring ws in first position. O

Proposition B.9. Let k > 3 and let (wy,...,wg), (w],...,w}) be M-big ordered k-tuples such
that A(ws, ..., wk;v1,...,08) = AW, ..., wi;v1,...,v,) = A= Z. Then there is a sequence of
Nielsen moves and relative Nielsen moves from (w1, ..., wy) to (wy, ..., wy;,) such that every k-tuple
that we write along the sequence is M -big.

Proof. Let [w;], [w]] be equal to «a;,a) through the isomorphism A = Z, for ¢ = 1,...,k and
o, o € Z. If among «;, o there is at least one integer > 0 and at least one integer < 0, then
(v1,...,vp) has to contain a vector whose components are all strictly positive, and thus we are
done by Proposition Thus we assume oy, o >0 for alli=1,... k.

By Lemma we find A > 0 such that ged(ag + Aag, as) = ged(aq, s, a3). We substitute
wy with wy + Aws and thus we can assume ged(ay,as) = ged(ag, g, a3). By reiterating the
same reasoning, we can assume ged(ag, ag) = ged(aq, ..., ax) = 1. Now, by substituting ws with
w3+ Aw1 + Aaws for A1, Ay > 0, we can set ag to be equal to any sufficiently large natural number.
Similarly, we can assume ged(of,a)) = 1, and we are able to set af to be any sufficiently large
natural number. We choose to set ag = a4 and such that ged(aq, a3) = ged(af, as3) = 1. Now,
by substituting we with wy + piwi + psws for pi, us > 0, we can set ay to be any sufficiently
large natural number. Similarly, we are able to set o to be any big enough natural number. We
choose to set ag = o and such that ged(ag, @3) = 1. Reasoning in the same way, and keeping
wa, w3, wh, ws fixed, we can set a; = of and a; = o for ¢ > 4.

To conclude, for i = 1,...,k, we observe that o; = o implies that w} = w; + p1vy + - + ppon
for some pq,...,up € Z and thus by Lemma we can obtain w; = w} by means of Nielsen
moves and relative Nielsen moves. The statement follows. O
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Proof of Theorem[B.1] [1] = [2| Trivial.

= If A is a finite abelian group, then we must have djw;] = 0 in A for some d > 1,
and this implies that (vy,...,v,) contains the vector dw;, which has all the components strictly
positive; the conclusion follows from Proposition [B:4l If A is isomorphic to Z, then we are done
by Proposition [B.9]

Otherwise we write A2 Z®Z/deZ P ... DZ/d,,Z for integers m > 2 and da, . . .,d,, > 0 with

1 # dp, | dm_1 | | ds. By either Proposition or Proposition we are able to change
(wf,...,w)) by means of Nielsen moves and relative Nielsen moves in such a way that [w]] is not

a proper power in A, and that [w]] can be represented by a vector whose first two components are
coprime. We now apply Proposition and we apply a sequence of Nielsen moves and relative
Nielsen moves to (w1, ..., w), in order to obtain that w] = wy; —wy + p1v1 +- - - + ppv,. By means
of Proposition we can easily change w; in such a way that w; = wj.

If m > 3 then we can apply Lemma since [w]] can be represented by a vector whose
first two components are coprime, and we obtain that ([we], ..., [wk]), ([ws],. .., [w}]) are Nielsen
equivalent (k — 1)-tuples of generators for A/([wy]). If m = 2 then [w}] can be represented
by a vector whose components are coprime, and thus we can apply Lemma [A-6] to obtain that
([wal, ..., [wk]), (Jws], ..., [w}]) are Nielsen equivalent (k — 1)-tuples of generators for A/([w]). In
both cases, the conclusion follows from Proposition
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Figure 9: An example of a connection move. Above you can see the GBS graphs; here £,/y = (¥
for some integer k£ > 0. Below you can see the corresponding affine representations.

Figure 17: Two non-isomorphic GBS graphs and the corresponding affine representations. The
invariant distinguishing them is the Nielsen equivalence class of the couple of vectors: the deter-
minant of the change of basis from one to the other is —1.

(Flv ¢1) (F% '(/}2) (F37 ¢5)

Figure 18: Three pairwise non-isomorphic GBS groups, as in Example
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Figure 19: The affine representation for the GBS graph of Example [5.30 The edges have been
assigned orientations going out of the minimal points.

Figure 20: A first manipulation maximizes the number of positive vectors, leaving only two edges
(at m5, my) going from a vertex to another.
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Figure 21: A normal form for the GBS graph of Example [5.30)

Figure 22: The affine representation for the GBS graph of Example [5.31
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