
On the isomorphism problem for generalized

Baumslag-Solitar groups: angles

Dario Ascari
Department of Mathematics, University of the Basque Country,

Barrio Sarriena, Leioa, 48940, Spain

e-mail: ascari.maths@gmail.com

Montserrat Casals-Ruiz
Ikerbasque - Basque Foundation for Science and Matematika Saila,

UPV/EHU, Sarriena s/n, 48940, Leioa - Bizkaia, Spain

e-mail: montsecasals@gmail.com

Ilya Kazachkov
Ikerbasque - Basque Foundation for Science and Matematika Saila,

UPV/EHU, Sarriena s/n, 48940, Leioa - Bizkaia, Spain

e-mail: ilya.kazachkov@gmail.com

Abstract

We introduce a new isomorphism invariant for generalized Baumslag-Solitar groups (GBS),
the limit angle. This invariant has a geometric interpretation that displays qualitatively new
dynamics, and it is completely different from any previously known isomorphism invariant.
We apply this invariant to classify GBSs with one vertex and two edges.

1 Introduction

The isomorphism problem for generalized Baumslag–Solitar groups (GBSs) is a long-standing
open question that has attracted considerable attention (see [For06, Lev07, CF08, Dud17, CRKZ21,
Wan25]). Interest in this problem stems from the theory of JSJ decompositions, which plays a
central role in resolving the isomorphism problem for hyperbolic groups [Sel95, DG11, DT19].
For those groups the JSJ decomposition is essentially unique and thus this naturally leads to the
question of whether the JSJ decomposition can be useful to classify broader classes of groups that
admit infinitely many different JSJ decompositions. In this context, GBS groups represent the
simplest unsolved case. The significance of GBSs is further underscored by recent results of the
authors [ACRK25b, ACRK25a], which provide evidence that the isomorphism problem and the
structure of the outer automorphism groups for large families of groups can be reduced to the case
of GBS groups.

In [ACRK25b] the authors initiated a systematic study of the isomorphism problem for GBS
groups, see references therein for previously known results. They proved that for any two iso-
morphic GBS groups, there exists an explicit (computable) bound on the number of vertices and
edges in the graph of groups decompositions appearing along a sequence of moves that realizes the
isomorphism.

This line of research was continued in [ACRK25c], where the authors introduced several new
isomorphism invariants for GBS groups (the linear invariants, the set of rigid edges, and the
assignment map) and showed that these invariants are sufficient to determine the isomorphism
class within a broad family of GBS groups: those with one quasi-conjugacy class, full-support
gaps, and at least three interacting edges.
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However, when only two edges interact with each other, the previously introduced invariants
are no longer sufficient to fully characterize the isomorphism class. In this paper, we address this
case by introducing a new invariant for GBS groups: the limit angle. This invariant has a geometric
interpretation that captures qualitatively new dynamics, one that arises exclusively in the case of
two interacting edges. Furthermore, with the invariants introduced in [ACRK25c] and the limit
angle, we are able to solve the isomorphism problem for groups with one vertex and two edges:

Theorem A (Corollary 3.15). There is an algorithm that, given two GBS graph (Γ, ψ), (∆, ϕ),
where (Γ, ψ) has one vertex and two edges, decides whether the corresponding GBS groups are
isomorphic or not.

We believe that this invariant, together with the main result of Theorem A, will play a crucial
role in solving the isomorphism problem for GBS groups.

Description of the invariant We consider one-vertex two-edges GBS graphs (Γ, ψ) with two
minimal points. For each such GBS graph (with few exceptions, see Remark 4.3), we define two
limit directions l−, l+ ∈ R2 (Definition 4.2). The positive cone P(Γ,ψ) := {λl− + µl+ : λ, µ ∈
[0,+∞)} ⊆ R2 in the Euclidean plane is called the limit angle of (Γ, ψ).

We show that the limit angle, when considered alongside a fixed family of linear invariants and
an assignment map, completely determines the isomorphism type of the GBS group.

Theorem B (Theorem 4.7). Let (Γ, ψ), (∆, ϕ) be two one-vertex two-edges GBS graphs with two
minimal points, and the same linear invariants and assignment map. Suppose that the limit angles
P(Γ,ψ), P(∆,ϕ) are defined. Then the following are equivalent:

1. Then the corresponding GBS groups are isomorphic.

2. The limit angles coincide (i.e. P(Γ,ψ) = P(∆,ϕ)).

3. The vectors defined by the edges of ∆ in the affine representation (based at the origin) lie
inside the limit angle P(Γ,ψ).

Example 1.1. Let us consider the GBS graph (Γ, ψ) of Figure 1. In this example, one can compute
the limit directions, which are given by l− = (2, 5) and l+ = (5, 2), see Figure 2.

Consider the GBS graph (∆1, ϕ1), with two loops labeled by 33, 2938 and 23, 21737 respectively.
It is easy to check that (∆1, ϕ1) has the same linear invariants and assignment map as (Γ, ψ).
Moreover, the two edges of (∆1, ϕ1) define the two vectors (9, 5) and (14, 7), which fall inside the
limit angle P(Γ,ψ), as

2
5 <

9
5 <

14
7 < 5

2 . Therefore, we deduce from Theorem B that (∆1, ϕ1) is
isomorphic to (Γ, ψ).

Consider now the GBS graph (∆2, ϕ2), with two loops labeled by 33, 2634 and 23, 22833 respec-
tively. Once again (∆2, ϕ2) has the same linear invariants and assignment map as (Γ, ψ). In this
case, the two edges of (∆2, ϕ2) define the two vectors (6, 1) and (25, 3), which fall outside the limit
angle P(Γ,ψ), as

2
5 <

5
2 <

6
1 <

25
3 . Therefore, from Theorem B we conclude that (∆2, ϕ2) is not

isomorphic to (Γ, ψ).
In fact, among groups with the same linear invariants and assignment map, there are infinitely

many possible limit angles, each of them corresponding to an isomorphism class of GBS groups,
see Figure 3. We refer the reader to Example 4.18 for further details.
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Figure 1: From left to right: the GBS graph (Γ, ψ), its affine representation, the two vectors at the
origin of the Euclidean plane R2. Note that the picture on the right is not supposed to represent
a GBS (but it is useful to emphasize the angle defined by the two vectors).
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Figure 2: The limit directions l−, l+ and the positive cone P(Γ,ψ). The two vectors v1,v2 will always
fall inside the positive cone of their own GBS graph. In order to check isomorphism with another
GBS graph (∆, ϕ), we must computed the vectors associated with (∆, ϕ), and check whether they
fall inside the positive cone P(Γ,ψ).

A natural question then arises: how many distinct limit angles can occur among GBS groups
that have the same linear invariants? In general, this set is infinite, that is, the limit angle
invariant can distinguish infinitely many isomorphism classes of groups with the same linear algebra
invariants and assignment map. However, the structure of the limit angles given a fixed set of linear
invariants is organized as a finite union of arithmetic progressions. In Theorem C, we provide a
complete description of the set of all possible limit angles.

Theorem C (Theorem 4.14). Let us fix the set of linear invariants and assignment map of a
non-degenerate (non-exceptional) GBS graph with one vertex and two edges. Then,

1. The set of directions that can be realized as limit directions is a finite union of arithmetic
progressions.

2. This finite set of arithmetic progressions can be computed algorithmically.

3. If P is the open cone of all vectors with strictly positive components, then the set of limit
directions has no accumulation point in the interior of P (i.e. it is finite inside any closed
sub-cone of P ).
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Figure 3: Fixed the linear invariants and the assignment map, there are usually infinitely many
possible limit angles. In the picture, we represent finitely many of them: each gray region corre-
sponds to an isomorphism class of GBS groups.
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2 GBS graphs and quasi-conjugacy classes

In this section we set up the notation, and we review some notions from [ACRK25b].

2.1 Graphs of groups

We consider graphs as combinatorial objects, following the notation of [Ser77]. A graph is a
quadruple Γ = (V,E, ·, ι) consisting of a set V = V (Γ) of vertices, a set E = E(Γ) of edges, a
map · : E → E called reverse and a map ι : E → V called initial endpoint ; we require that, for
every edge e ∈ E, we have e ̸= e and e = e. For an edge e ∈ E, we denote with τ(e) = ι(e) the
terminal endpoint of e. A path in a graph Γ, with initial endpoint v ∈ V (Γ) and terminal endpoint
v′ ∈ V (Γ), is a sequence σ = (e1, . . . , eℓ) of edges e1, . . . , eℓ ∈ E(Γ) for some integer ℓ ≥ 0, with the
conditions ι(e1) = v and τ(eℓ) = v′ and τ(ei) = ι(ei+1) for i = 1, . . . , ℓ− 1. A graph is connected
if for every couple of vertices, there is a path going from one to the other. For a connected graph Γ,
we define its rank rk Γ ∈ N ∪ {+∞} as the rank of its fundamental group (which is a free group).

Definition 2.1. A graph of groups is a quadruple

G = (Γ, {Gv}v∈V (Γ), {Ge}e∈E(Γ), {ψe}e∈E(Γ))

consisting of a connected graph Γ, a group Gv for each vertex v ∈ V (Γ), a group Ge for every edge
e ∈ E(Γ) with the condition Ge = Ge, and an injective homomorphism ψe : Ge → Gτ(e) for every
edge e ∈ E(Γ).

4



Let G = (Γ, {Gv}v∈V (Γ), {Ge}e∈E(Γ), {ψe}e∈E(Γ)) be a graph of groups. Define the universal
group FG(G) as the quotient of the free product (∗v∈V (Γ)Gv) ∗ F (E(Γ)) by the relations

e = e−1 ψe(g) · e = e · ψe(g)

for e ∈ E(Γ) and g ∈ Ge.
Define the fundamental group π1(G, ṽ) of a graph of group G with basepoint ṽ ∈ V (Γ) to be

the subgroup of FG(G) of the elements that can be represented by words such that, when going
along the word, we read a path in the graph Γ from ṽ to ṽ. The fundamental group π1(G, ṽ) does
not depend on the chosen basepoint ṽ, up to isomorphism.

2.2 Generalized Baumslag-Solitar groups

Definition 2.2. A GBS graph of groups is a finite graph of groups

G = (Γ, {Gv}v∈V (Γ), {Ge}e∈E(Γ), {ψe}e∈E(Γ))

such that each vertex group and each edge group is Z.

A Generalized Baumslag-Solitar group is a group G isomorphic to the fundamental group
of some GBS graph of groups.

Definition 2.3. A GBS graph is a couple (Γ, ψ) where Γ is a finite graph and ψ : E(Γ) → Z\{0}
is a function.

Given a GBS graph of groups G = (Γ, {Gv}v∈V (Γ), {Ge}e∈E(Γ), {ψe}e∈E(Γ)), the map ψe : Ge →
Gτ(e) is an injective homomorphism ψe : Z → Z, and thus coincides with multiplication by a unique
non-zero integer ψ(e) ∈ Z \ {0}. We define the GBS graph associated to G as (Γ, ψ) associating to
each edge e the factor ψ(e) characterizing the homomorphism ψe.Giving a GBS graph of groups is
equivalent to giving the corresponding GBS graph. In fact, the numbers on the edges are sufficient
to reconstruct the injective homomorphisms and thus the graph of groups.

2.3 Reduced affine representation of a GBS graph

Definition 2.4. For a GBS graph (Γ, ψ), define its set of primes

P(Γ, ψ) := {r ∈ N prime : r
∣∣ ψ(e) for some e ∈ E(Γ)}

Given a GBS graph (Γ, ψ), consider the finitely generated abelian group

A := Z/2Z⊕
⊕

r∈P(Γ,ψ)

Z.

We denote with 0 ∈ A the neutral element. For an element a = (a0, ar : r ∈ P(Γ, ψ)) ∈ A (with
a0 ∈ Z/2Z and ar ∈ Z for r ∈ P(Γ, ψ)), we denote a ≥ 0 if ar ≥ 0 for all r ∈ P(Γ, ψ); notice that
we are not requiring any condition on a0. We define the positive cone A+ := {a ∈ A : a ≥ 0}.

Definition 2.5. Let (Γ, ψ) be a GBS graph. Define its (reduced) affine representation to be
the graph Λ = Λ(Γ, ψ) given by:

1. V (Λ) = V (Γ)×A+ is the disjoint union of copies of A+, one for each vertex of Γ.

2. E(Λ) = E(Γ) is the same set of edges as Γ, and with the same reverse map.

3. For an edge e ∈ E(Λ) we write the unique factorization ψ(e) = (−1)a0
∏
r∈P(Γ,ψ) r

ar and we

define the terminal endpoint τΛ(e) = (τΓ(e), (a0, ar, . . . )).

For a vertex v ∈ V (Γ) we denote A+
v := {v} ×A+ the corresponding copy of A+.
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If Λ contains an edge going from p to q, then we denote p q. If Λ contains edges from pi
to qi for i = 1, . . . ,m, then we denote 

p1 q1

· · ·
pm qm

This does not mean that p1 q1, . . . , pm qm are all the edges of Λ, but only that in a certain
situation we are focusing on those edges. If we are focusing on a specific copy A+

v of A+, for some
v ∈ V (Γ), and we have edges (v,ai) (v,bi) for i = 1, . . . ,m, then we say that A+

v contains
edges 

a1 b1

· · ·
am bm

omitting the vertex v.

2.4 Support and control of vectors

The following notions for elements of A will be widely used along the paper.

Definition 2.6. For x ∈ A define its support as the set

supp(x) := {r ∈ P(Γ, ψ) : xr ̸= 0}

Remark 2.7. Note that we omit the Z/2Z component from the definition of support.

Definition 2.8. Let a,b,w ∈ A+. We say that a,w controls b if any of the following equivalent
conditions holds:

1. We have a ≤ b ≤ a+ kw for some k ∈ N.

2. We have b− a ≥ 0 and supp(b− a) ⊆ supp(w).

2.5 Affine paths and conjugacy classes

Let (Γ, ψ) be a GBS graph and let Λ be its affine representation. Given a vertex p = (v,a) ∈
V (Λ) and an element w ∈ A+, we define the vertex p+w := (v,a+w) ∈ V (Λ). For two vertices
p, p′ ∈ V (Λ) we denote p′ ≥ p if p′ = p+w for some w ∈ A+; in particular this implies that both
p, p′ belong to the same A+

v for some v ∈ V (Γ).

Definition 2.9. An affine path in Λ, with initial endpoint p ∈ V (Λ) and terminal endpoint
p′ ∈ V (Λ), is a sequence (e1, . . . , eℓ) of edges e1, . . . , eℓ ∈ E(Λ) for some ℓ ≥ 0, such that there
exist w1, . . . ,wℓ ∈ A+ satisfying the conditions ι(e1)+w1 = p and τ(eℓ)+wℓ = p′ and τ(ei)+wi =
ι(ei+1) +wi+1 for i = 1, . . . , ℓ− 1.

The elements w1, . . . ,wℓ are called translation coefficients of the path; if they exist, then
they are uniquely determined by the path and by the endpoints, and they can be computed
algorithmically. They mean that an edge e ∈ E(Λ) connecting p to q allows us also to travel from
p+w to q +w for every w ∈ A+.

Definition 2.10. Let p, q ∈ V (Λ).

1. We denote p ∼c q, and we say that p, q are conjugate, if there is an affine path going from
p to q.

2. We denote p ⪯c q if p ≤ q′ for some q′ ∼c q.

3. We denote p ∼qc q, and we say that p, q are quasi-conjugate, if p ⪯c q and q ⪯c p.

The relation ∼c is an equivalence relations on the set V (Λ). The relation ⪯c is a pre-order
on V (Λ), and ∼qc is the equivalence relation induced by the pre-order. Note that if p ∼c p

′ then
p+w ∼c p

′ +w for all w ∈ A+. Similarly, if p ∼qc p
′ then p+w ∼qc p

′ +w for all w ∈ A+.
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2.6 Moves on GBS graphs

We introduce some moves that can be performed on a GBS graph. Each of them induces an iso-
morphism at the level of fundamental group of the corresponding graph of groups, see [ACRK25b].
Let (Γ, ψ) be a GBS graph.

Vertex sign-change. Let v ∈ V (Γ) be a vertex. Define the map ψ′ : E(Γ) → Z \ {0} such
that ψ′(e) = −ψ(e) if τ(e) = v and ψ′(e) = ψ(e) otherwise. We say that the GBS graph (Γ, ψ′)
is obtained from (Γ, ψ) by means of a vertex sign-change. If G is the GBS graph of groups
associated to (Γ, ψ), then the vertex sign change move corresponds to changing the chosen generator
for the vertex group Gv.

Edge sign-change. Let (Γ, ψ) be a GBS graph. Let d ∈ E(Γ) be an edge. Define the map
ψ′ : E(Γ) → Z \ {0} such that ψ′(e) = −ψ(e) if e = d, d and ψ′(e) = ψ(e) otherwise. We say that
the GBS graph (Γ, ψ′) is obtained from (Γ, ψ) by means of an edge sign-change. If G is the GBS
graph of groups associated to (Γ, ψ), then the vertex sign change move corresponds to changing
the chosen generator for the edge group Gd.

Slide. Let d, e be distinct edges with τ(d) = ι(e) = u and τ(e) = v; suppose that ψ(e) = n and
ψ(e) = m and ψ(d) = ℓn for some n,m, ℓ ∈ Z\{0} (see Figure 4). Define the graph Γ′ by replacing
the edge d with an edge d′; we set ι(d′) = ι(d) and τ(d′) = v; we set ψ(d′) = ψ(d) and ψ(d′) = ℓm.
We say that the GBS graph (Γ′, ψ) is obtained from (Γ, ψ) by means of a slide. At the level of
the affine representation, we have an edge p q and we have another edge with an endpoint at
p + a for some a ∈ A+. The slide has the effect of moving the endpoint from p + a to q + a (see
Figure 4). {

p q

r p+ a

slide−−−→

{
p q

r q + a

Induction. Let (Γ, ψ) be a GBS graph. Let e be an edge with ι(e) = τ(e) = v; suppose that
ψ(e) = 1 and ψ(e) = n for some n ∈ Z \ {0}, and choose ℓ ∈ Z \ {0} and k ∈ N such that
ℓ
∣∣ nk. Define the map ψ′ equal to ψ except on the edges d ̸= e, e with τ(e) = v, where we

set ψ′(d) = ℓ · ψ(d). We say that the GBS graph (Γ, ψ′) is obtained from (Γ, ψ) by means of an
induction. At the level of the affine representation, we have an edge (v,0) (v,w). We choose
w1 ∈ A+ such that w1 ≤ kw for some k ∈ N; we take all the endpoints of other edges lying in
A+
v , and we translate them up by adding w1 (see Figure 5).

Swap. Let (Γ, ψ) be a GBS graph. Let e1, e2 be distinct edges with ι(e1) = τ(e1) = ι(e2) =
τ(e2) = v; suppose that ψ(e1) = n and ψ(e1) = ℓ1n and ψ(e2) = m and ψ(e2) = ℓ2m and n

∣∣ m and

m
∣∣ ℓk11 n andm

∣∣ ℓk22 n for some n,m, ℓ1, ℓ2 ∈ Z\{0} and k1, k2 ∈ N (see Figure 6). Define the graph
Γ′ by substituting the edges e1, e2 with two edges e′1, e

′
2; we set ι(e′1) = τ(e′1) = ι(e′2) = τ(e′2) = v;

we set ψ(e′1) = m and ψ(e′1) = ℓ1m and ψ(e′2) = n and ψ(e′2) = ℓ2n. We say that the GBS graph
(Γ′, ψ) is obtained from (Γ, ψ) by means of a swap move. Let w1,w2 ∈ A+ and p, q ∈ V (Λ) be
such that p ≤ q ≤ p + k1w1 and p ≤ q ≤ p + k2w2 for some k1, k2 ∈ N. At the level of the affine
representation, we have an edge e1 going from p to p+w1 and an edge e2 going from q to q+w2.
The swap has the effect of substituting them with e′1 from q to q+w1 and with e′2 from p to p+w2

(see Figure 6). {
p p+w1

q q +w2

swap−−−→

{
q q +w1

p p+w2

Connection. Let (Γ, ψ) be a GBS graph. Let d, e be distinct edges with ι(d) = u and τ(d) =
ι(e) = τ(e) = v; suppose that ψ(d) = m and ψ(d) = ℓ1n and ψ(e) = n and ψ(e) = ℓn and ℓ1ℓ2 = ℓk

for some m,n, ℓ1, ℓ2, ℓ ∈ Z \ {0} and k ∈ N (see Figure 7). Define the graph Γ′ by substituting the
edges d, e with two edges d′, e′; we set ι(d′) = v and τ(d′) = ι(e′) = τ(e′) = u; we set ψ(d′) = n
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and ψ(d′) = ℓ2m and ψ(e′) = m and ψ(e′) = ℓm. We say that the GBS graph (Γ′, ψ) is obtained
from (Γ, ψ) by means of a connection move. Let w,w1,w2 ∈ A+ and k ∈ N be such that
w1 +w2 = k ·w. At the level of the affine representation, we have a two edges q p+w1 and
p p+w. The connection move has the effect of replacing them with two edges p p+w2

and q q +w (see Figure 7).{
q p+w1

p p+w

connection−−−−−−−→

{
p q +w2

q q +w

Remark 2.11. In the definition of connection move, we also allow for the two vertices u, v to
coincide.

2.7 Sequences of moves

The following Theorem 2.12 is one of the main results from [ACRK25b], telling us that, in
order to deal with the isomorphism problem for GBSs, it suffices to deal with sequences of moves
as described in Section 2.6 above. For the notion of totally reduced GBS graph, we refer the reader
to [ACRK25b]. We point out that the requirement of being totally reduced is not restrictive at
all: every GBS graph can be algorithmically changed into a totally reduced one by means of a
sequence of moves.

Theorem 2.12. Let (Γ, ψ), (∆, ϕ) be totally reduced GBS graphs and suppose that the correspond-
ing graphs of groups have isomorphic fundamental group. Then |V (Γ)| = |V (∆)| and there is a
sequence of slides, swaps, connections, sign-changes and inductions going from (∆, ϕ) to (Γ, ψ).
Moreover, all the sign-changes and inductions can be performed at the beginning of the sequence.

Proof. See [ACRK25b].

Thus it suffices to deal with the following problem: given two GBS graphs (Γ, ψ), (∆, ϕ), deter-
mine whether there is a sequence of edge sign-changes, inductions, slides, swaps, connections going
from one to the other. Note that a sign-change (resp. a slide, an induction, a swap, a connection)
induces a natural bijection between the set of vertices of the graph before and after the move.
Of course we can ignore the issue of guessing the bijection among the sets of vertices and the
sign-changes at the beginning of the sequence, as these choices can be done only in finitely many
ways. In what follows, we will also ignore the issue of guessing the inductions at the beginning of
the sequence, as this usually represents a marginal issue.

3 GBS graphs with two edges

The aim of this section is to solve the isomorphism problem for GBS groups associated to GBS
graphs with one vertex and two edges.

The hard case is dealing with configurations as in Definition 3.1 below. In this case, slide and
connection moves will be able to change two of the four endpoints of our edges, while the other
two are forced to stay fixed at the minimal points (swaps can be applied basically never). In
Section 3.2 we show how, when using only slides, one obtains (a subset of) a rooted binary tree
of configurations, with a special configuration being the root of the binary tree. In Section 3.3 we
show that the only relevant connections are the ones applied at the root of the binary tree. In
Section 3.4 we describe the set of all possible roots arising from a given one with connection, which
turns out to be a union of two arithmetic progressions (plus finitely many configurations). This
allows us to prove Theorem 3.14.

3.1 Configurations

Let (Γ, ψ) be a GBS graph with one vertex and two edges. Let Λ be its affine representation,
which consists of a unique copy of A+, corresponding to the unique vertex of Γ, and two edges.
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n m

ℓn

n m

ℓm
slide

slide

Figure 4: An example of a slide move. Above you can see the GBS graphs. Below you can see the
corresponding affine representations.

m2

m3

m1

induction

1

n

ℓm2

ℓm3

ℓm1

1

n

induction

Figure 5: An example of an induction move. Above you can see the GBS graphs; here ℓ
∣∣ nk for

some integer k ≥ 0. Below you can see the corresponding affine representations.
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swap

n

ℓ1n

ℓ2m

m

n

ℓ2n

ℓ1m

m

swap

p

q

p

q

Figure 6: An example of a swap move. Above you can see the GBS graphs; here n
∣∣ m ∣∣ ℓk11 n

and n
∣∣ m ∣∣ ℓk22 n for some integers k1, k2 ≥ 0. Below you can see the corresponding affine

representations.

n

mℓ1n connection

ℓn m

ℓ2mn

ℓm

connection

p

q

p

q

Figure 7: An example of a connection move. Above you can see the GBS graphs; here ℓ1ℓ2 = ℓk

for some integer k ≥ 0. Below you can see the corresponding affine representations.
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Definition 3.1 (Configurations). A configuration is given by two edges inside A+

(C) =

{
a1 a1 + x1

a2 a2 + x2

for some a1,a2 ∈ A+ and x1,x2 ∈ A satisfying the following properties:

1. a1 ̸≥ a2 and a2 ̸≥ a1.

2. a1 + x1 is bigger or equal than at least one of a1,a2.

3. a2 + x2 is bigger or equal than at least one of a1,a2.

In what follows, we will say that the configuration (C) has minimal points a1,a2 and vectors
x1,x2. When a1,a2 are clear from the context, we will just say that (C) has vectors x1,x2. Note
that, if we apply a sequence of moves to a configuration, we obtain another configuration. Moreover,
the two minimal points a1,a2 will stay the same (except possibly for the Z/2Z component), and
thus are an isomorphism invariant of (Γ, ψ).

Definition 3.2. Let (C) be a configuration with minimal points a1,a2 and vectors x1,x2. We say
that (C) is degenerate if it falls into at least one of the following cases:

1. At least one of x1,x2 lies in Z/2Z ≤ A.

2. The two edges are a1 a2 + e and a2 a1 + e′ for some e, e′ ∈ Z/2Z ≤ A.

3. a1 + x1 ̸≥ a2 and a2 + x2 ̸≥ a1.

A configuration is degenerate if and only if, by applying sequences of slides, swaps, connections
involving only the two edges of the configuration, we can reach only finitely many GBS graphs. In
that case, in all the GBS graphs that we can reach, the two edges form a degenerate configuration.

In what follows, we will assume that our configurations are non-degenerate. In this case, the
only possible moves are slides and connections, and by applying these moves we end up at other
configurations. We point out that almost all slide moves only change one of the two endpoints
a1 + x1,a2 + x2, while the endpoints a1,a2 are usually not involved. The only exception is the
case of twin roots (Definition 3.4 below), which will be treated separately.

3.2 Sons, roots and binary trees

We are interested in studying the set of all configurations that can be reached from a given
one by means of slide moves only. Suppose that we are given a configuration (C) with minimal
points a1,a2 and vectors x1,x2. If a1 + x1 ≥ a2 then we can perform a slide move to obtain the
configuration

(C1) =

{
a1 a1 + x1 + x2

a2 a2 + x2

and if a2 + x2 ≥ a1 then we can perform a slide move to obtain the configuration

(C2) =

{
a1 a1 + x1

a2 a2 + x2 + x1

We say that the configurations (C1) and (C2) are the sons of the configuration (C). The first son
(C1) is the one obtained by changing the first edge and has vectors x1 + x2,x2; the second son
(C2) is the one obtained by changing the second edge and has vectors x1,x2 + x1 (see Figure 8).
Every non-degenerate configuration has at least one son, and at most two.

Denote with {1, 2}∗ the set of all finite words in the letters 1, 2. Then we can consider the
configurations (Cs) for s ∈ {1, 2}∗ obtained by taking iterated sons. We say that the configuration
(Cs) exists if the sequence of slide moves given by s can be performed, and we say that the
configuration (Cs) does not exist otherwise. For example, if the configuration (C1222) exists, then
it has vectors x1 + x2,x2 + 4(x1 + x2).
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(C)

x1

x2

(C2)

x1

x2 + x1

Figure 8: An example of a configuration (C) and of its second son (C2).

Definition 3.3. A configuration (R) with minimal points a1,a2 and vectors x1,x2 is called root
if a1 + x1 ̸≥ a2 + x2 and a2 + x2 ̸≥ a1 + x1.

A configuration is root if and only if it is not the son of any other configuration. Every
configuration has a root, and the root is unique in most cases, except in the case of twin roots, as
we now explain.

Definition 3.4 (Twin roots). Two non-degenerate roots (R), (Q) are called twin roots if they
are of the form

(R) =

{
a1 a2 + e

a2 a2 + x2

and (Q) =

{
a1 a1 + x1

a2 a1 + e

with e ∈ Z/2Z ≤ A and x1,x2 ̸≥ 0 satisfying x1 + λa1 = x2 + λa2 + λe for some integer λ ≥ 2.

If a root has a twin, then the twin is uniquely determined. It is easy to see that, given two
twin roots, we can go from one to the other by means of a sequence of slide moves.

Proposition 3.5 (Existence and uniqueness of roots). Every non-degenerate configuration (C) is
an iterated son (C) = (Rs) of a root (R). Moreover, exactly one of the following cases takes place:

1. There is exactly one possible choice of (R) and of s ∈ {1, 2}∗.

2. There are exactly two possible choices of (R), and they are twin roots. For each of them,
there is a unique possible choice of s ∈ {1, 2}∗.

Proof. Take a configuration given by edges a1 a1 + x1 and a2 a2 + x2. This is a first son
of some other configuration if and only if a1 + x1 ≥ a2 + x2, and in that case the “first father” is
uniquely determined. Similarly, it is a second son of another configuration if and only if a2 +x2 ≥
a1+x1, and in that case “second father” is uniquely determined. Thus we can find a unique father
(either a first father or a second father) of our configuration; unless a2 + x2 = a1 + x1 + e with
e ∈ Z/2Z ∈ A, in which case we can find exactly one first father and exactly one second father.

CASE OF TWIN ROOTS: suppose that a2+x2 = a1+x1+e with e ∈ Z/2Z ∈ A. Then we can
go to the first father with edges a1 a2+e and a2 a2+x2; from here, we are forced to take
iterated second fathers with edges a1 a2+e and a2 a2+x2−k(a2−a1+e) for k ≥ 0, and
note that at some point this must stop, since a1−a2 ̸≥ 0; thus we have a unique way of reaching a
root, which will have edges a1 a2 + e and a2 a2 +x2 + e−µ(a2 −a1 + e) for some µ ∈ N.
Similarly, we can go to the second father with edges a1 a1 +x1 and a2 a1 + e; from here,
we have a unique way of reaching a root, which will have edges a1 a1 + x1 − ν(a1 − a2 + e)
and a2 a1+e for some ν ∈ N. It is easy to check that these are twin roots, and are the unique
two roots possible for our configuration.

If we are not in the “case of twin roots”, then we have a unique father for our configuration,
so we can move to this father. Similarly, we keep taking iterated fathers; if at any point we end
up in a configuration which has more than one father, then we are in the “case of twin roots”, and
we are done. Otherwise, we just have to show that the process terminates, and the conclusion will
follow.
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If x1,x2 ≥ 0, then the sum of all of the components of x1 + x2 strictly decreases every time
we take a father (since the configuration is non-degenerate). Thus this can not be the case along a
whole infinite sequence. Suppose that at some point we end up, say, in a configuration with x1 ≥ 0
and x2 ̸≥ 0; note that in any case −x2 ̸≥ 0. If a2+x2 ≥ a1+x1, then take iterated second fathers,
changing x2 into x2 − kx1 for k ≥ 0, and this must stop since x1 ≥ 0 and the configuration is
non-degenerate. If a1+x1 ≥ a2+x2, then we take iterated first fathers, changing x1 into x1−kx2,
and the process must terminate since −x2 ̸≥ 0. The statement follows.

Fixed a configuration (C), we are interested in describing the family of its iterated sons (Cs)
for s ∈ {1, 2}∗. By Proposition 3.5, we know that the set of iterated sons of (C) is a subset of
a rooted binary tree; in fact, if (Cs) = (Cs′) then we write (C) = (Rt) for some root (R), and
we deduce that (Rts) = (Rts′) and thus ts = ts′, yielding s = s′. The following Proposition 3.6
gives a precise characterization of which subsets of the binary tree can occur (see Figure 9), and
in which cases. We are mainly interested in the particular case when (C) is a root - but the result
is proved without this assumption.

Proposition 3.6 (Binary trees). Suppose that (C) is a non-degenerate configuration with minimal
points a1,a2 and vectors x1,x2. Then exactly one of the following cases happens:

1. a1 + x1 ̸≥ a2. In this case, (Cs) exists if and only if s = 2i for some i ≥ 0.

2. a2 + x2 ̸≥ a1. In this case, (Cs) exists if and only if s = 1i for some i ≥ 0.

3. a1 + x1 ≥ a2 and a2 + x2 ≥ a1 and x1,x2 ≥ 0. In this case, (Cs) exists for all s ∈ {1, 2}∗.

4. a1+x1 ≥ a2 and a2+x2 ≥ a1 and x1 ≥ 0 and x2 ̸≥ 0. In this case, call h ≥ 0 the maximum
integer such that a1 + x1 + hx2 ≥ a2. Then, (Cs) exists if and only if either s begins with
1h

′
2 for some 0 ≤ h′ ≤ h, or s = 1h+12i for some i ≥ 0.

5. a1+x1 ≥ a2 and a2+x2 ≥ a1 and x1 ̸≥ 0 and x2 ≥ 0. In this case, call k ≥ 0 the maximum
integer such that a2 + x2 + kx1 ≥ a1. Then, (Cs) exists if and only if either s begins with
2k

′
1 for some 0 ≤ k′ ≤ k, or s = 2k+11i for some i ≥ 0.

6. a1 +x1 ≥ a2 and a2 +x2 ≥ a1 and x1,x2 ̸≥ 0. In this case, call h ≥ 0 the maximum integer
such that a1+x1+hx2 ≥ a2, and call k ≥ 0 the maximum integer such that a2+x2+kx1 ≥ a1.
Then (Cs) exists if and only if either s begins with 1h

′
2 for some 0 ≤ h′ ≤ h, or s begins

with 2k
′
1 for some 0 ≤ k′ ≤ k, or s = 1h+12i for some i ≥ 0, or s = 2k+11i for some i ≥ 0.

Proof. Item 1 follows from the fact that the configuration is non-degenerate, and thus a2+x1 ≥ a1.
Similarly for Item 2.

If we are in a configuration satisfying the conditions of Item 3, then the configuration has two
sons, that will still satisfy the conditions of Item 3. Thus the full binary tree originating from that
configuration exists. In particular we obtain Item 3.

Suppose that we are in the conditions of Item 4. The configuration (C2) exists, and it satisfies
the conditions of Item 3, and thus the full binary tree over this configuration exists. For every
integer 0 ≤ h′ ≤ h, the configuration (C1h

′
2) exists, and it satisfies the conditions of Item 3, and

thus the full binary tree over this configuration exists. Finally, the configuration (C1h+1) exists,
and it satisfies the conditions of Item 1; the conclusion follows.

Item 5 and Item 6 are analogous.
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Figure 9: Two examples of subsets of a rooted binary tree. On the left the tree corresponding to
Item 3 of Proposition 3.6, while on the right the tree corresponding to Item 4.

In the particular case of twin roots, the behavior of the binary trees is as follows. Let

(R) =

{
a1 a2 + e

a2 a2 + x2

and (Q) =

{
a1 a1 + x1

a2 a1 + e

be non-degenerate twin roots with x1 + λa1 = x2 + λa2 + λe for λ ≥ 2 (see Figure 10).

Lemma 3.7 (Binary trees for twin roots). We have the following:

1. For s ∈ {1, 2}∗, we have that (Rs) exists if and only if either s does not begin with 1, 2λ−1,
or s = 12i, 2λ−11i for some i ≥ 0.

2. For s ∈ {1, 2}∗, we have that (Qs) exists if and only if either s does not begin with 2, 1λ−1,
or s = 21i, 1λ−12i for some i ≥ 0.

3. A configuration (C) is an iterated son of both (R), (Q) if and only if (C) is an iterated son
of (R2ℓ1) = (Q1λ−1−ℓ2) for some 0 ≤ ℓ ≤ λ− 1. In that case, ℓ is uniquely determined.

Proof. Item 1 and Item 2 follow using Proposition 3.6. For Item 3, we observe that the configura-
tions (R), (R2), . . . , (R2λ−1) can not be iterated sons of (Q) (since in iterated sons of (Q) the edge
a1 a2+e never appears as first edge), and similarly (Q), (Q1), . . . , (Q1λ−1) can not be iterated
sons of (R). It is easy to check that (R2ℓ1) = (Q1λ−1−ℓ2) for 0 ≤ ℓ ≤ λ − 1. If (C) has more
than one root, then by Proposition 3.5 we can write (C) = (Rs) for a unique s ∈ {1, 2}∗, and since
(C) ̸= (R), (R2), . . . , (R2λ−1) we obtain that (s) must begin with 2ℓ1 for a unique 0 ≤ ℓ ≤ λ− 1.
The conclusion follows.
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(R) (Q)

x2

x1

Figure 10: An example of two twin roots. The dashed line witnesses the identity x1+3a1 = x2+3a2,
and hints the sequence of slide moves necessary to pass from one twin to the other.

3.3 Connections in a binary tree

Lemma 3.8 tells us that, if we can perform a connection from a configuration (C), then one of
the two sons exists, and we can obtain the same result by performing a connection from the son
- this means that we can restrict our attention only to connections performed at very deep levels
in the trees. On the contrary, Lemma 3.9 tells us that, if we can apply a connection from a son
configuration (C1), then we can obtain the same result by performing a connection from (C) - this
means that we can restrict our attention only to connections performed at the roots.

Lemma 3.8 (Moving to sons). If a non-degenerate configuration (C) allows for a connection
(with the first edge controlling the endpoint of the second), then (C2) exists and it allows for a
connection (with the first edge controlling the endpoint of the second). Moreover, the result of the
two connections is the same (for suitable choices of the parameter k of Section 2.6).

Proof. Immediate from the definitions.

Lemma 3.9 (Moving to roots). Let (C) be a non-degenerate configuration and suppose that (C1)
exists.

1. (C1) allows for a connection (with the first edge controlling the endpoint of the second) if and
only if (C2) exists. In that case, the result of the connection is (C2) (for a suitable choice of
the parameter k of Section 2.6).

2. If (C1) allows for a connection (with the second edge controlling the endpoint of the first),
then (C) allows for a connection (with the second edge controlling the endpoint of the first).
Moreover, the result of the two connections is the same (for suitable choices of the parameter
k of Section 2.6).

Proof. Suppose that (C) has minimal points a1,a2 and vectors x1,x2. Since (C1) exists, we must
have a1 + x1 ≥ a2.

If (C1) allows for a connection (with the first edge controlling the endpoint of the second) then
a2 + x2 ≥ a1 and thus (C2) exists. If (C2) exists then a2 + x2 ≥ a1, and thus a1 + x1 + x2 ≥
a2+x2 ≥ a1, giving that (C1) allows for a connection (with the first edge controlling the endpoint
of the second). It is immediate to check that the result of the connection from (C1) is (C2), as
desired.

The second item is immediate from the definitions.

Lemma 3.10 (Jumping between roots). Let (R) be a non-degenerate root and suppose that we
are in the hypothesis to perform a connection (with the first edge controlling the endpoint of the
second). If we perform the connection, choosing the parameter k of Section 2.6 to be the minimum
possible integer, then the result of the connection is a non-degenerate root.
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Proof. Suppose that (R) has minimal points a1,a2 and vectors x1,x2. Suppose that x1 ≥ 0
and that a1,x1 controls a2 + x2, so that we are in the hypothesis to perform a connection, with
the first edge controlling the endpoint of the second. Consider the minimum integer k such that
a1 + kx1 ≥ a2 + x2, and observe that k ≥ 2, otherwise (R) would not be a root. We now perform
a connection obtaining the configuration{

a1 a1 + kx1 − x2

a2 a2 + x1

Suppose that a1+ kx1−x2 ≥ a2+x1: then a1+(k− 1)x1 ≥ a2+x2 contradicting the minimality
of k. Suppose that a1+kx1−x2 ≤ a2+x1: then a1+x1 ≤ a1+(k− 1)x1 ≤ a2+x2 contradicting
the fact that (R) was a root. This shows that the configuration obtained after the connection is a
root, as desired.

3.4 The sequence of roots

Definition 3.11. Let (R) be a non-degenerate root.

1. If (R) allows for a connection (with the first edge controlling the endpoint of the second),
define the root (R−) as we one obtained performing the connection, as in Lemma 3.10.

2. If (R) allows for a connection (with the second edge controlling the endpoint of the first),
define the root (R+) as we one obtained performing the connection, as in Lemma 3.10.

It is immediate from the definitions that, if (R−) exists, then (R−+) exists and it is equal
to (R); and similarly on the other side. Given a non-degenerate root (R), we can consider the
sequence of non-degenerate roots

. . . , (R−−), (R−), (R), (R+), (R++), . . .

obtained by an iterated application of Lemma 3.10 (see Figure 11). On each side, the sequence
can be finite or infinite. If an element v ∈ A+ plays the role of v = x1 in (R), then we have that
the same element plays the role of v = x2 in (R−). Thus, associated with the sequence of roots
we have a unique sequence

. . . ,v−2,v−1,v0,v1,v2, . . .

with vi ∈ A, and such that (R+i) has vectors vi,vi+1. As for the sequence of roots, this sequence
of elements of A can be finite or infinite on each side. Moreover, we have that vi ≥ 0 except
possibly for the first/last element of the sequence, if the sequence is finite on the left/right.

Remark 3.12. One might be worried about twin roots appearing in the sequence above. However,
it is easy to check that a twin root never allows for any connection. Thus, if we start with a
non-twin root, then no root along the sequence will be a twin root.

Figure 11: A sequence of binary trees. The roots are related to each other by means of connection
moves. On the right, the sequence terminates at a root that allows for connection only on one side.
On the left, the sequence is infinite.

The following Proposition 3.13 allows us to effectively compute the sequence vi starting from
the two initial values v0,v1.
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Proposition 3.13 (Sequence of roots). Let (R) be a non-degenerate non-twin root, with vectors
v0,v1. Let . . . ,v−1,v0,v1,v2, . . . be the corresponding sequence of vectors. Then we have the
following:

1. If vi,vi+1,vi+2 exist, then
vi+2 = kvi+1 − vi

where k ≥ 2 is the minimum natural number such that kvi+1 − vi ≥ a1 − a2.

2. If vi−1,vi,vi+1 exist, then
vi−1 = hvi − vi+1

where h ≥ 2 is the minimum natural number such that hvi − vi+1 ≥ a2 − a1.

3. If the sequence . . . ,v−2,v−1,v0,v1,v2, . . . is infinite on the right, then vi ≤ vi+1 for some
i ∈ Z. For every such i, the subsequence vi+1,vi+2,vi+3, . . . is an arithmetic progression.

4. If the sequence . . . ,v−2,v−1,v0,v1,v2, . . . is infinite on the left, then vi−1 ≥ vi for some
i ∈ Z. For every such i, the subsequence . . . ,vi−3,vi−2,vi−1 is an arithmetic progression.

Proof. Item 1 is immediate from the definitions. Note that kvi+1 − vi ≥ a1 − a2 for k = 0 would
imply that a2 ≥ a1+vi, and thus we would be in the case of a twin root, and no connection would
be possible. Note that kvi+1 − vi ≥ a1 − a2 for k = 1 would imply that a2 + vi+1 ≥ a1 + vi
contradicting the fact that (R+i) is root. Therefore k ≥ 2. Similarly for Item 2.

Take r ∈ P(Γ, ψ) with the projection πr : A → Z on the corresponding component, and
consider the sequence of integers

. . . , πr(vi)− πr(vi−1), πr(vi+1)− πr(vi), πr(vi+2)− πr(vi+1), . . . . (1)

If vi−1,vi+1 exist, then vi ≥ 0 and vi−1 + vi+1 = kvi ≥ 2vi for some k ≥ 3. Therefore the
sequence (1) is a non-decreasing sequence of integers.

For Item 3, suppose that the sequence is infinite on the right. For every r ∈ P(Γ, ψ), there
must be an index i ∈ Z such that πr(vi+1) − πr(vi) ≥ 0 (otherwise πr(vi) → −∞ for i → +∞,
contradiction). Since we have finitely many choices of r ∈ P(Γ, ψ), there must be an index i ∈ Z
such that vi+1 ≥ vi. If i ∈ Z satisfies vi ≤ vi+1, then vi ≤ vi+1 ≤ vi+2 ≤ . . . since (1) is
non-decreasing. For every j ≥ i + 1 we must have a2 + vj+1 ≥ a1 (since vj−1 exists), and thus
2vj+1 − vj ≥ a1 − a2, yielding that vj+2 = 2vj+1 − vj . It follows that vi+1,vi+2,vi+3, . . . is an
arithmetic progression. Item 4 is analogous.

3.5 Classification of GBS graphs with one vertex and two edges

We are now ready to classify GBS graphs of groups with one vertex and two edges.

Theorem 3.14. There is an algorithm that, given two totally reduced GBS graph (Γ, ψ), (∆, ϕ),
where (Γ, ψ) has one vertex and two edges, decides whether there is a sequence of slides, swaps,
connections going from (Γ, ψ) to (∆, ϕ). In case such a sequence exists, the algorithm also computes
one such sequence.

Proof. We can assume that both GBS graphs have one vertex and two edges. If the two edges of
(Γ, ψ) are in different quasi-conjugacy classes, then we are done by the results of [ACRK25c] ; thus
we assume that they belong to a common quasi-conjugacy class. Note that the minimal regions of
this quasi-conjugacy class consist basically of a point each (modulo the Z/2Z component).

CASE 1: Suppose that the quasi-conjugacy class has four minimal regionsM1,M2,M3,M4. By
[ACRK25c] the four endpoints of the two edges must lie one in each. Suppose that the first edge
has endpoints in M1,M2 and the other in M3,M4. But then M1 ∪M2 is a quasi-conjugacy class
by itself, contradiction.

CASE 2: Suppose that the quasi-conjugacy class has three minimal regions M1,M2,M3. By
[ACRK25c], three of the four endpoints of the edges must lie in the minimal regions, suppose
we have one edge with endpoints in M1,M2 and the other with one endpoint in M3. The other
endpoint must lie in one of M1,M2, otherwise M1 ∪M2 would be a quasi-conjugacy class by itself.
It follows that we can reach only finitely many GBS graphs, and we are done.
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CASE 3: Suppose that the quasi-conjugacy class has two minimal regions M1,M2. If one edge
has no endpoint in any of them, then by [ACRK25c] the other endpoint must have one endpoint
in each, and thus M1∪M2 is a quasi-conjugacy class by itself, contradiction. Thus each edge must
have at least one endpoint in each, and thus we are in a configuration

(R) =

{
a1 a1 + v1

a2 a2 + v2

where a1,a2 lie in M1,M2 respectively. If the configuration is degenerate, then we can only reach
finitely many GBS graphs, and we are done. Otherwise, up to slides, we can assume that (R) is a
root.

If (R) is not a twin root, then every slide and connection will always lead to another configura-
tion, with the same endpoints a1,a2, changing only the two endpoints a1+v1,a2+v2. We consider
the sequence of vectors . . . ,v−1,v0,v1,v2, . . . as in Section 3.4, and note that by Proposition 3.13
we can algorithmically compute a finite segment of it, until, one each side, the sequence either
terminates or becomes an infinite arithmetic progression. Thus (∆, ϕ) must be a configuration
of the same kind, and we can compute a root for (∆, ϕ), say with edges a1 a1 + u1 and
a2 a2+u2. We algorithmically check whether u1,u2 is a subsegment of our finite sequence, or
whether it belongs to one the arithmetic progressions. If it does, then we can explicitly compute a
sequence of moves going from (Γ, ψ) to (∆, ϕ), otherwise such a sequence of moves does not exist.

If (R) is a twin root, we call

(R) =

{
a1 a2 + e

a2 a2 + x2

and (Q) =

{
a1 a1 + x1

a2 a1 + e

with e ∈ Z/2Z ≤ A and x1,x2 ̸≥ 0 satisfying x1 + λa1 = x2 + λa2 + λe for some integer λ ≥ 2.
If from (R) we perform a slide changing the endpoint a2 of the second edge, then we end up with
two edges a1 a2 + e and a1 + e a2 + x2, and the root of this configuration is a twin root
(Q′), with twin (R′), given by

(R′) =

{
a1 + e a2

a2 + e a2 + x2 + e
and (Q′) =

{
a1 + e a1 + x1 + e

a2 + e a1

and note that these coincide with (R), (Q) is e is trivial. In any case, the configurations that we
can reach from (R) by means of moves are exactly the iterated sons of (R), (Q), (R′), (Q′). Thus
(∆, ϕ) must be a configuration of the same kind, and we can compute a root for (∆, ϕ), and check
whether it coincides with one of (R), (Q), (R′), (Q′). If it does, then we can explicitly compute a
sequence of moves going from (Γ, ψ) to (∆, ϕ), otherwise such a sequence of moves does not exist.

CASE 4: Suppose that the quasi-conjugacy class has one minimal region M . Up to performing
some slide an swap, we can assume that (Γ, ψ) has edges a a+w and b b+ x, such that
a,w controls b,b+ x. But now it is a controlled GBS graph, and the conclusion follows from the
results of [ACRK25b].

Corollary 3.15. There is an algorithm that, given two totally reduced GBS graph (Γ, ψ), (∆, ϕ),
where (Γ, ψ) has one vertex and two edges, decides whether the corresponding GBS groups are
isomorphic or not, and in case they are, computes a sequence of sign-changes, inductions, slides,
swaps, connections going from (Γ, ψ) to (∆, ϕ).

Proof. By Theorem 3.14, we only need to deal with the case where we have induction (since sign-
changes can be guessed in finitely many ways, see Theorem 2.12 in Section 2.6). Thus we can
assume that (Γ, ψ) has edges 0 w and b b+ x, and that (∆, ϕ) has edges 0 w′ and
b′ b′ + x′.

If the two edges lie in the same conjugacy class, then we fall in the cases treated in [ACRK25b].
Therefore, we can assume that the two edges lie in different quasi-conjugacy classes. In this case,
induction will translate the conjugacy class of b b+x, and after that only external equivalence
is possible. Thus we just have to check whether w = w′ (so that the lower quasi-conjugacy class
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is dealt with) and suppqc(b − b′) ⊆ suppqc(w) (so that, up to induction, we can set b = b′) and
x− x′ ∈ ⟨w⟩ (so that, after the induction, we can make the two edges equal by means of external
equivalence). All of this can be done algorithmically. The conclusion follows.

4 Limit angles

This section is dedicated to giving an interpretation of the previous results in terms of angles
in the Euclidean plane R2. Each configuration determines an angle, and moving away from the
root in a binary tree makes the angle narrower. The root of the binary tree, having the largest
angle, is able to “see” more configurations.

A connection move has the effect of rotating the angle: you can choose to rotate to the left
or to the right. This allows us to reach new configurations that before we would not see. If you
keep performing connections to rotate the angle always in the same direction, you will converge to
a direction, which we call limit direction. The two limit directions (on the left and on the right)
determine an angle, which we call the limit angle of the GBS group.

This limit angle is an isomorphism invariant of the GBS group: limit angles for non-isomorphic
GBS groups are disjoint. We give a description of the set of all possible limit angles that can
appear, showing that this is a discrete set (it can only accumulate at the boundary of the positive
cone). See also Figure 15 and Figure 16 from the example at the end of the section.

4.1 Limit directions

We are now interested in giving an interpretation of the results in terms of angles. In this
section we give the technical definition of limit direction (see Definition 4.2 below), which will be
crucial in what follows.

Definition 4.1. Let (C) be a configuration with minimal points a1,a2 and vectors x1,x2. We say
that (C) is full-tree if a1 + x1,a2 + x2 ≥ a1,a2.

This means that (C) is non-degenerate and falls into the case of Item 3 of Proposition 3.6;
equivalently, the iterated son (Cs) exists for all s ∈ {1, 2}∗. Every (iterated) son of a full-tree
configuration is again a full-tree configuration.

Let (R) be a non-degenerate non-twin root, with vectors v0,v1. Let . . . ,v−1,v0,v1,v2, . . . be
the corresponding sequence of vectors, as in Section 3.4. We want to characterize all the full-tree
configurations that can be obtained from (R) by means of slides and connections. As note before,
every root in the sequence is full-tree (and thus all the iterated sons are full-tree too), except
possibly for the first/last root of the sequence (when the sequence is finite on the left/right). If the
sequence of roots terminates on the left/right, then the first/last root will fall into exactly one of
the cases of Proposition 3.6. In each of those cases, it is easy to characterize which of the iterated
sons are full-tree.

It is always possible to go from any full-tree configuration to every other full-tree configuration
(possibly in a different tree), by means of slides and connections, passing only through full-tree
configurations (by Lemma 3.8). Thus, in the same way as in Section 3.4 we defined the sequence
of roots, one could define a “sequence of minimal full-tree configurations” (most of them would
be roots, except near the beginning/end of the sequence). However, we are only interested in the
first and last elements of the sequence (or in the limits, when the sequence is infinite), as we now
explain.

Let (R) be a root with at least one full-tree iterated son. For s ∈ {1, 2}∗, we say that (Rs) is a
minimal full-tree iterated son if (Rs) is full-tree, and there is no initial segment s′ ̸= s such that
(Rs′) is full-tree. It is easy to check, with Proposition 3.6, that (R) has finitely many minimal full-
tree iterated sons (Rs1), (Rs2), . . . , (Rsk) for some integer k ≥ 1 (and these can be algorithmically
computed from (R)). Among s1, . . . , sk ∈ {1, 2}∗, we take the unique sj that begins with most
digits 2. We say that (Rsj) is the right-most minimal full-tree iterated son of (R).

Definition 4.2 (Limit directions). Let (R) be a non-degenerate non-twin root, with vectors v0,v1.
Let . . . ,v−1,v0,v1,v2, . . . be the corresponding sequence of vectors as in Section 3.4. Define the
(right) limit direction of (R) as the element l+ ∈ A obtained as follows:
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1. If the sequence is infinite on the right: then we set l+ = vi+1 − vi for i ∈ N big enough.

2. If the sequence terminates on the right, and some root in the sequence has some full-tree
iterated son: then we take the maximum i ∈ Z such that (R+i) has a full-tree iterated son,
and we take the right-most minimal full-tree iterated son (R+is) of (R+i). We set l+ to be
the second vector of (R+is).

3. If no root in the sequence has any full-tree iterated son: then we say that l+ is not defined.

Similarly, we can define an order ⪯1 on {1, 2}∗, and the left-most full-tree iterated son of a root
(R). In the same way as in Definition 4.2, we can define the (left) limit direction of (R), which
will be an element l− ∈ A. The two limit directions satisfy several properties:

• We have that l+ is defined if and only if l− is defined, and if and only if there is at least one
full-tree configuration that can be reached from (R) by means of slides and connections.

• If l−, l+ are defined, then we have that l−, l+ ≥ 0.

• If l−, l+ are defined, then each of them is part of some basis for ⟨v0,v1⟩. In general, l− and
l+ together do not generate ⟨v0,v1⟩ - i.e. they are part of two different bases.

Remark 4.3. It is natural to wonder for which sequences of roots the limit directions do not exist.
Such a sequence contains either one or two roots. It can be a single root, falling into the case of
Item 6 of Proposition 3.6 with parameters h = k = 1. It can consist of a single root, falling into
the case of Item 2 or Item 1 of Proposition 3.6. It can consist of two roots, the first falling into
the case of Item 2 and the second falling into the case of Item 1 of Proposition 3.6. These are all
the possibilities.

4.2 Rank-2 configurations and angles

Definition 4.4. A configuration (C) with vectors x1,x2 is called rank-2 if ⟨x1,x2⟩ ∼= Z2.

Let (R) be a non-degenerate root with vectors v0,v1, and suppose that (R) is rank-2. Then
the results about the roots can be reinterpreted in terms of angles in the Euclidean plane R2 =
⟨v0,v1⟩ ⊗ R. With Proposition 4.5 we show that (C) belongs to the binary tree of (R) if and
only if (C) lies inside the angle defined by (R) - up to a few exceptional cases (the non-full-tree
configurations). However, by means of connection moves, it is possible to escape from this angle;
with the subsequent Theorem 4.7 we show that (C) can be obtained from (R) by means of slides
and connections if and only if (C) belongs to a wider limit angle induced by (R) - again, up to a few
exceptional cases (the non-full-tree configurations). In other words, for GBS groups corresponding
to rank-2 configurations, we have a complete set of invariants classifying them (i.e. minimal points,
subgroup generated, limit angle) - once again, up to the few exceptional cases where the limit angles
are not defined. With Proposition 4.9 we show that distinct limit angles do not intersect, except
possibly at their boundary.

Proposition 4.5 (Angles). Let (C) be a rank-2 full-tree configuration with vectors x1,x2. Then, a
configuration (D) with vectors y1,y2 is an iterated son of (C) if and only if the following conditions
hold:

1. ⟨y1,y2⟩ = ⟨x1,x2⟩ and y1,y2 is Nielsen equivalent to x1,x2.

2. We have that yi = λix1 + µix2 for some integers λi, µi ≥ 0, for i = 1, 2.

Remark 4.6. Item 2 of the above Proposition 4.5 means that the vectors y1,y2 are internal to the
positive cone determined by x1,x2. We also refer to this positive cone as the angle determined by
x1,x2.

Proof. If (D) is an iterated son of (C), then the two conditions hold (by induction on the number
of iterations of taking the son). Suppose now that the two conditions hold.

Since ⟨x1,x2⟩ ∼= Z2, the condition ⟨y1,y2⟩ = ⟨x1,x2⟩ implies that y1 = λx1 + µx2 for some
unique coprime integers λ, µ, and by hypothesis we must have λ, µ ≥ 0. We now start with the
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configuration (C) with vectors x1,x2, and with the numbers λ, µ; we take iterated sons to perform
the Euclidean algorithm, as follows.

If µ ≥ λ > 0, then we take the first son (C1) with vectors x′
1 = x1 + x2,x

′
2 = x2, and we take

the integers λ′ = λ, µ′ = µ− λ such that y1 = λ′x′
1 + µ′x2. If λ > µ > 0, then we take the second

son (C2) with vectors x′
1 = x1,x

′
2 = x2 + x1), and we take the integers λ′ = λ − µ, µ′ = µ such

that y1 = λ′x′
1 + µ′x′

2. Note that, in both cases, the couple x′
1,x

′
2 is Nielsen equivalent to x1,x2,

and λ′, µ′ ≥ 0 are coprime. We then reiterate the procedure with (C1) or (C2) respectively; and
so on.

The procedure will stop with an iterated son (Cs), for some s ∈ {1, 2}∗, associated with
vectors (u1,u2) and coprime non-negative integers (η, θ), such that (i) the couple u1,u2 is Nielsen
equivalent to x1,x2 and (ii) y1 = ηu1 + θu2 and (iii) either η = 0 or θ = 0.

CASE 1: Suppose that θ = 0. Then η = 1 (since they are coprime) and thus y1 = u1. Since
u1,u2 is Nielsen equivalent to y1,y2 (and they generate a Z2), we must have that y2 = u2 + ku1

for some integer k ∈ Z. If k ≥ 0 then (D) = (Cs2k) and we are done. Otherwise (D2|k|) = (Cs)
with k < 0: we take |k| to be the smallest such that there is such an s, and in particular s must
terminate with 1. Say s = t1, and we get that (Ct) has vectors u1 − u2,u2 and (D2|k|−1) has
vectors u1,u2 − u1. But then u1 − u2 and u2 − u1 are both combinations with non-negative
coefficients of x1,x2 ≥ 0, contradiction.

CASE 2: Suppose that η = 0. Then θ = 1 (since they are coprime) and thus y1 = u2. Since
u1,u2 is Nielsen equivalent to y1,y2, we must have that y2 = −u1 + ku2 for some integer k ∈ Z.
This means that we can jump from some iterated son of (C) to (D) by means of a connection. By
Lemma 3.9 we obtain that either (D) is an iterated son of (C) (in which case we are done) or (D)
is obtained from (C) itself by means of a connection. But if we obtain (C) from (D) by means
of a connection, then y2 can not be written as a linear combination of x1,x2 with non-negative
coefficients, contradiction.

Let (R) be a non-degenerate non-twin rank-2 root with vectors v0,v1. Let . . . ,v−1,v0,v1,v2, . . .
be the corresponding sequence of vectors as in Section 3.4. We want to characterize all rank-2 con-
figurations that can be obtained from (R) by means of slides and connections.

Theorem 4.7 (Limit angles). Let (R) be a non-degenerate non-twin rank-2 root with vectors
v0,v1, and with limit directions l−, l+. Then, a full-tree configuration (D) with vectors y1,y2 can
be obtained from (R) by means of slides and connections if and only if the following conditions
hold:

1. ⟨y1,y2⟩ = ⟨v0,v1⟩ and y1,y2 is Nielsen equivalent to v0,v1.

2. We have that νiyi = λil
− + µil

+ for some integers λi, µi ≥ 0 and νi > 0, for i = 1, 2.

Remark 4.8. Item 2 of the above Theorem 4.7 means that the vectors y1,y2 are internal to the
(rational) positive cone induced by l−, l+. We also refer to this positive cone as the limit angle
determined by l−, l+.

Proof. OBSERVATION 1: Let p,q, r, s ≥ 0 be non-zero. Suppose that q is a combination with
strictly positive rational coefficients of p, r, and r is a combination with strictly positive rational
coefficients of q, s. Then q, r are combinations with strictly positive rational coefficients of p, s.

In fact, write q = λp + µr and r = ηq + θs with λ, µ, η, θ > 0. We deduce that (1 − µη)q =
λp+ µθs; since p, s ≥ 0 are non-zero, we deduce that 1− µη > 0 and the conclusion follows.

OBSERVATION 2: Let p,q, r,x ≥ 0 be non-zero. Suppose that q,x are combinations with
non-negative rational coefficients of p, r. Then x is a combination with non-negative rational
coefficients of either p,q or q, r.

In fact, write q = λp + µr and x = ηp + θr and observe that λx = ηq + (λθ − µη)r and
µx = θq+ (µη − λθ)p. If λ = 0 or µ = 0 we are done; otherwise, we use one or the other identity,
depending on the sign of λθ − µη, and we are done.

STEP 1: We prove that for all full-tree configurations, which are iterated sons of some root in
the sequence, has vectors that can be written as combinations of l−, l+ with non-negative rational
coefficients.
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We note that, in the sequence . . . ,vi−1,vi,vi+1, . . . , every term can be written as a combination
of the two adjacent ones with strictly positive rational coefficients.

We note that if the sequence is infinite on the right, then for j ∈ Z big enough we have that
l+ = vj − vj−1 and thus vj can be written as a linear combination of vj−1 and l+ with strictly
positive rational coefficients.

We note that if vj−1,vj ,vj+1 exist, and if l+ is a vector in some iterated son of vj ,vj+1, then
we can write l+ = λvj + µvj+1 for some integers λ ≥ 0 and µ > 0, and vj−1 + vj+1 = kvj for
some integer k ≥ 2. But then vj =

µ
kµ+λvj−1 +

1
kµ+1 l

+ is a combination of vj−1, l
+ with strictly

positive rational coefficients.
Putting all of this together, and using observation 1, we deduce that, for every full-tree root

in the sequence, its vectors are combinations of l−, l+ with non-negative rational coefficients. If it
is the case, the first/last tree in the sequence containing full-tree configurations is dealt with by
hand. The conclusion follows.

STEP 2: Suppose that (D) is a full-tree configuration with vectors y1,y2 that satisfies the
two conditions. We observe that l−, l+ are linearly independent, since they generate y1,y2. For
simplicity, we assume that the sequence of vectors is finite on the left and infinite on the right, the
other cases being similar.

Since y1,y2 are linearly independent, one of them can be written as a combination of l−, l+

with non-zero coefficient of l+. Suppose that y1 = λl− + µl+ with λ ≥ 0 and µ > 0 rationals, the
case with y2 being analogous.

We have that
vj

j → l+ for j → +∞, and thus for all j big enough we can write y1 = λjl
−+µj

vj

j ,

and we must have that λj → λ and µj → µ. In particular y1 must be a combination of l−,vj with
non-negative rational coefficients for all j big enough.

By step 1 we know that . . . ,vj−1,vj are all combinations with non-negative rational coefficients
of l−,vj (except possibly for the one/two initial terms of the sequence). By an iterated application
of observation 2, we deduce that y1 is a combination with non-negative rational coefficients of some
full-tree configuration (C) with vectors x1,x2, obtained from (R) with slides and connections.

We write y1 = ηx1 + θx2 with η, θ ≥ 0 rationals and y2 = σx1 + τx2 with σ, τ rationals. We
observe that, since y1,y2 is Nielsen equivalent to x1,x2, and since they generate a group isomorphic
to Z2, we have that η, θ, σ, τ are uniquely determined, and thus they must be integers. If η = 0
then we must have that θ = 1 and y1,y2 is related to x1,x2 by slides and possibly a connection,
and we are done. Similarly, if θ = 0 then we are done. If η, θ > 0, then up to changing y2 to
y2 + hy1 by means of slide moves, for h very big, we can assume that σ, τ > 0. The conclusion
follows by Proposition 4.5.

Proposition 4.9 (Different limit angles have disjoint interiors). Let (R), (S) be non-degenerate
non-twin rank-2 roots with vectors v0,v1 and u0,u1 respectively, and with limit directions l+, l−

and m+,m− respectively. Suppose that ⟨v0,v1⟩ = ⟨u0,u1⟩ and v0,v1 is Nielsen equivalent to
u0,u1. Then the (closed, rational) positive cones determined by l+, l− and by m+,m− satisfy
exactly one of the following possibilities:

1. The cones coincide. In this case l+ = m+ and l− = m− and (R), (S) belong to the same
sequence of roots.

2. The cones do not coincide, but they intersect non-trivially. In this case either l+ = m− (and
the intersection is exactly the line ⟨l+⟩ = ⟨m−⟩) or l− = m+ (and the intersection is exactly
the line ⟨l−⟩ = ⟨m+⟩).

3. The cones are disjoint.

Proof. Suppose that the interiors of the cones intersect. Then we must have that one of m+,m−,
say m−, is a combination of l+, l− with strictly positive rational coefficients.

Suppose that, by performing slides and connections on (R′), we can obtain a full-tree config-
uration (C ′) with vectors m− and some other vector. Then by Theorem 4.7 we obtain that (C ′)
can be obtained also from (R) by performing slides and connections. Thus in this case (R) and
(S) can be obtained from each other by means of connections, and the two cones coincide.

Suppose that the sequence of vectors . . . ,u−1,u0,u1, . . . is infinite on the left. Then we have
that

uj

|j| → m− for j → −∞ and thus for all but finitely many integers j < 0 we have that
uj

|j| is a
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combination of l+, l− with strictly positive rational coefficients. But then some full-tree root in the
sequence of (S) has both vectors uj−1,uj which are combinations of l+, l− with strictly positive
rational coefficients. By Theorem 4.7, this root must also belong to the sequence of roots associated
with (R). Therefore (R) and (S) can be obtained from each other by means of connections, and
the two cones coincide.

4.3 The space of limit angles

Fix two minimal points a1,a2 ∈ A+. Consider two vectors h1,h2 ∈ A generating a subgroup
⟨h1,h2⟩ ∼= Z2. We are interested in characterizing all the isomorphism classes of configurations
(C) with vectors x1,x2 such that ⟨x1,x2⟩ = ⟨h1,h2⟩ and x1,x2 is Nielsen equivalent to h1,h2.

In order to do this, the main step is characterizing which directions can be realized as limit
directions; this is done with the following Proposition 4.10. As we had already observed, a limit
direction l+ always satisfies l+ ≥ 0 and is always part of some basis for ⟨h1,h2⟩.

Proposition 4.10 (Realizing limit directions). Let h1,h2 ∈ A be such that ⟨h1,h2⟩ ∼= Z2. Let
l ∈ ⟨h1,h2⟩ be an element which is part of some basis (but not together with a1 − a2), and such
that all components of l are strictly positive. Then exactly one of the following cases takes place.

1. a2+ l ̸≥ a1. In this case, there is a full-tree configuration (C), with vectors Nielsen equivalent
to h1,h2, with limit angle l+ = l. The sequence of roots is uniquely determined, and is infinite
on the right.

2. a2 + l ≥ a1 and a1 + l ̸≥ a2. In this case there is a full-tree configuration (C), with vectors
Nielsen equivalent to h1,h2, and with limit angle l+ = l. The sequence of roots is uniquely
determined, and is finite on the right.

3. a2 + l ≥ a1 and a1 + l ≥ a2. In this case, there is no full-tree configuration (C), with vectors
Nielsen equivalent to h1,h2, with limit angle l+ = l.

Remark 4.11. Analogous conclusions holds with l− instead of l+. In particular, if all components of
l are strictly positive, then l can be realized as a right limit direction if and only if l can be realized
as a left limit direction, and if and only if l ̸≥ |a1 − a2| (the absolute value taken componentwise).

Remark 4.12. If l is part of a basis together with a1 − a2, then l appears in some full-tree config-
uration which has two twin roots.

Remark 4.13. In the above Proposition 4.10, instead of requiring that all components of l are
strictly positive, it suffices to require it only for the components in suppqc(a1−a2). The requirement
does not in any case include the component Z/2Z.

Proof. We denote with ∼ the relation of Nielsen equivalence. Take p ∈ A such that p, l ∼ h1,h2.
Note that p is uniquely determined up to adding multiples of l.

Suppose that l is the limit angle of a sequence of roots . . . ,vi,vi+1, . . . infinite on the right,
with vi,vi+1 Nielsen equivalent to h1,h2. Then, for i ∈ Z big enough, we have that vi, l =
vi,vi+1 − vi ∼ vi,vi+1 ∼ h1,h2 and thus vi = p + Al and vi+1 = p + (A + 1)l for some integer
A ∈ Z. But since vi,vi+1 is a root, we get that a2+p+(A+1)l ̸≥ a1+p+Al and thus a2+ l ̸≥ a1
as desired.

Note that the sequence of roots is uniquely determined in this case (up to shift).
Conversely, suppose that a2 + l ̸≥ a1. Since all components of l are strictly positive, it is easy

to check that for A ∈ N big enough the elements v0 = p + Al and v1 = p + (A + 1)l define a
full-tree root, whose sequence is infinite on the right and has limit angle l+ = l.

Suppose that l is the limit angle of a sequence of roots finite on the right. Then there must be a
full-tree configuration (C) with vectors x, l, which is an iterated son of some root of the sequence,
and with the following additional property: if we perform a connection (with the second edge
controlling the endpoint of the first) we do not get a full-tree configuration. Since (C) is full-tree,
we deduce that a2 + l ≥ a1 and that we can perform a connection (with the first edge controlling
the endpoint of the first). When we perform the connection we get l,−x+Bl, and, for B ∈ N big
enough, we have that −x+Bl ≥ 0 and a2−x+Bl ≥ a1 (since all the components of l are strictly
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positive); if this newly obtained configuration is not full-tree, it must be because a1 + l ̸≥ a2, as
desired.

Note that the sequence of roots is uniquely determined in this case, since x, l ∼ h1,h2 and
being full-tree uniquely determines x up to slide moves.

Conversely, suppose that a2 + l ≥ a1 and a1 + l ̸≥ a2. Since all components of l are strictly
positive, we can choose p ∈ A in such a way that p, l is a full-tree configuration (and p, l ∼ h1,h2).
Note that, by performing a connection (with the second edge controlling the endpoint of the first)
we obtain the configurations l,−p+ Bl, which will never be full-tree since a1 + l ̸≥ a2. Thus the
root of this configuration will give the desired sequence.

In order to get a full-tree configuration, a necessary condition is that the subgroup ⟨h1,h2⟩
contains at least one element with all components > 0 (or at least, the ones in suppqc(a1 − a2)).
In that case, the Euclidean plane ⟨h1,h2⟩⊗R will contain a non-empty open cone P , generated by
linear combinations with positive coefficients of elements with positive components. Note that the
complement P c has non-empty interior. The two lines in the boundary ∂P correspond to directions
of ⟨h1,h2⟩ ⊗ R where some component is equal to 0; note that such directions are not necessarily
realized in ⟨h1,h2⟩.

Theorem 4.14. Let h1,h2 ∈ A be such that ⟨h1,h2⟩ ∼= Z2. Suppose that ⟨h1,h2⟩ contains at
least one vector whose components are all strictly positive. Then we have the following:

1. The set of directions that can be realized as limit directions is a finite union of arithmetic
progressions in ⟨h1,h2⟩.

2. This finite set of arithmetic progressions can be algorithmically computed from a1,a2,h1,h2.

3. If P ⊆ ⟨h1,h2⟩ is the open cone defined above, then the set of limit directions has no accu-
mulation point in the interior of P (i.e. it is finite inside any closed sub-cone of P ).

Proof. Let l be a limit direction. There are at most two possibilities for l with some component
equal to zero; thus we assume that all components of l are strictly positive. According to Proposi-
tion 4.10 at least one of l ̸≥ a1−a2 or l ̸≥ a2−a1 holds, so assume that l ̸≥ a1−a2. The inequality
can fail only on finitely many components, so assume that it fails on the p0-th component for
some p0 ∈ P(Γ, ψ), and let c be the p0-th component of a1 − a2. We can write l = xh1 + yh2 for
some x, y ∈ Z coprime. Call a, b the p0-th components of h1,h2 respectively. Then we must have
0 < xa+ yb < c and thus xa+ yb can only assume finitely many values. Assume that xa+ yb = d
for some fixed d ∈ N.

If the equation xa+ yb = d has a solution x0a+ y0b = d, then all the other solutions are given
by (x0 + λ b

(a,b) )a+ (y0 − λ a
(a,b) )b = d for λ ∈ Z. We observe that (x0 + λ b

(a,b) , y0 − λ a
(a,b) ) divides

(ax0 + λ ab
(a,b) , by0 − λ ba

(a,b) ) = (ax0 + by0, by0 − λ ba
(a,b) ) which divides ax0 + by0 = d. In particular,

(x0 + λ
b

(a, b)
, y0 − λ

a

(a, b)
) = (x0 + λ′

b

(a, b)
, y0 − λ′

a

(a, b)
)

whenever λ′ − λ is multiple of d. Thus we can define the set S = {(x, y) ∈ Z2 : ax + by = d and
x, y coprime}, and we have that S is a finite union of arithmetic progressions. We now intersect
the set S with the conditions that xh1 + yh2 has all components > 0 and we get a finite union
of arithmetic progressions (possibly truncated on one or both sides). This describes the set of all
possible values for l = xh1 + yh2 as a finite union of arithmetic progressions, yielding Item 1.

All the above steps can be performed algorithmically, and thus we get Item 2.
For Item 3, if we have a sequence of limit directions ln converging to some direction, then up

to taking a subsequence we can assume that they all belong to a common arithmetic progression,
and thus ln = t+ knr for some t, r ∈ ⟨h1,h2⟩ and for kn → +∞ integers, and thus the limit of the
sequence of directions must be direction of r ∈ ⟨h1,h2⟩. Without loss of generality, we can also
assume that r is not a proper power (as we only care about the direction of r).

But if all components of r are strictly positive, then r can be realized as limit direction (by
Proposition 4.10), and thus all ln for n big enough must belong to some full-tree configuration
with limit direction r, contradiction.
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4.4 Non-rank-2 configurations

We finally deal with the case of configurations which are not rank-2. Fix two minimal points
a1,a2 ∈ A+.

Proposition 4.15. Let h1,h2 ∈ A be such that ⟨h1,h2⟩ ∼= Z or Z⊕ Z/2Z. Let l ∈ ⟨h1,h2⟩ be an
element which is part of a generating pair, and such that all components of l are strictly positive.
Then exactly one of the following cases takes place:

1. a2+ l ̸≥ a1. In this case, there is a full-tree configuration (C), with vectors Nielsen equivalent
to h1,h2, with limit angle l+ = l. Moreover, there are finitely many sequences of roots for
such a configuration (C), and each of them is infinite on the right.

2. a2 + l ≥ a1 and a1 + l ̸≥ a2. In this case, there is a full-tree configuration (C), with vectors
Nielsen equivalent to h1,h2, with limit angle l+ = l. Moreover, there are finitely many
sequences of roots for such a configuration (C), and each of them is finite on the right.

3. a2 + l ≥ a1 and a1 + l ≥ a2. In this case, there is no full-tree configuration (C) with limit
direction l+ = l.

Remark 4.16. In the above Proposition 4.15, instead of requiring that all components of l are
strictly positive, it suffices to require it only for the components in suppqc(a1−a2). The requirement
does not in any case include the component Z/2Z.

Proof. Suppose first that ⟨h1,h2⟩ ∼= Z generated by z. Write l = ℓz for some integer ℓ, which we
can assume to be ≥ 1 (meaning that z has all components strictly positive).

If . . . ,vi,vi+1, . . . is a sequence of roots infinite on the right, with limit direction l+ = l, then
for i ∈ N big enough we must have that vi = λz and vi+1 = λz+ l for some integer λ ≥ 1. Since
vi,vi+1 generate ⟨z⟩ we deduce that (λ, ℓ) = 1. Since vi,vi+1 form a root, we must have that
a2 + λz+ l ̸≥ a1 + λz meaning that a2 + l ̸≥ a1, as desired.

Conversely, suppose that a2 + l ̸≥ a1. Then we choose λ ∈ N big enough and coprime with ℓ,
and we define the root λz, λz+ l. This gives us a sequence of roots, infinite on the right, with limit
direction l+ = l. Note also that changing λ by adding or subtracting ℓ will give the same sequence
of roots (shifted by one). Since there are finitely many (and at least one) residues modulo ℓ which
are coprime with ℓ, we obtain that there are finitely many sequences of roots, infinite on the right,
with limit direction l+ = l.

Suppose now that l is the limit angle of a sequence of roots finite on the right. Let λz, µz be
the last root of the sequence, for some integers λ, µ ≥ 1 with (λ, µ) = 1. This must fall into Item 1
of Proposition 3.6, meaning that a1 + λz ̸≥ a2. In order for the sequence to have limit directions,
we must also have a2+λz ≥ a1. In this case the limit direction of the sequence of roots is ℓ+ = λz,
meaning that λ = ℓ, as desired.

Conversely, suppose that a2 + l ≥ a1 and a1 + l ̸≥ a2. Then we choose λ ∈ N big enough and
coprime with ℓ, and we define the configuration ℓz, λz. This gives us a sequence of roots, finite on
the right, with limit direction l+ = ℓ. Note also that changing λ by adding or subtracting ℓ gives
us the same sequence of roots. Since there are finitely many (and at least one) residues modulo
ℓ which are coprime with ℓ, we obtain that there are finitely many sequences of roots, infinite on
the right, with limit direction l+ = l.

In the case where ⟨h1,h2⟩ ∼= Z ⊕ Z/2Z, we consider the element ϵ ∈ A of order two, and we
write l + ϵ = ℓz with ℓ ≥ 1 maximum possible. We must have that ⟨z, ϵ⟩ = ⟨h1,h2⟩ (otherwise
l is not part of a basis for ⟨h1,h2⟩), and all components of z are strictly positive. Note that
az+ bϵ, cz+ dϵ is a basis for ⟨h1,h2⟩ if and only if a, c are coprime and the determinant ad− bc is
odd. Using this, the proof proceeds the same as before.

Corollary 4.17. Let h1,h2 ∈ A be such that ⟨h1,h2⟩ ∼= Z or Z ⊕ Z/2Z. Then there are finitely
many isomorphism classes of full-tree configurations (C) with vectors Nielsen equivalent to h1,h2.
Moreover, this finite set of isomorphism classes can be algorithmically computed.
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4.5 Examples

For simplicity, we consider only examples (Γ, ψ) where all the labels on all the edges are positive.
We use A = ZP(Γ,ψ), omitting the Z/2Z summand. We ignore sign-change moves.

Example 4.18. Consider the GBS graph (Γ, ψ) with one vertex and two edges, as in Figure 12, and
call Λ its affine representation. We have that P(Γ, ψ) = {2, 3}. The only vertex of Γ corresponds
to a single copy of A+ in Λ. The two edges belong to a common quasi-conjugacy class, with two
minimal regions, corresponding to the points a1,a2 ∈ A+ with a1 = (0, 3) and a2 = (3, 0). The
affine representation has edges (0, 3) (11, 13) and (3, 0) (18, 13).

This gives us a configuration (C) with vectors x1 = (11, 10),x2 = (15, 13). It is fairly easy to
compute the root (R) of this configuration, which has vectors v1 = (3, 4),v2 = (4, 3). One readily
checks that (C) = (R112), see Figure 13.

(R) =

{
(0, 3) (0, 3) + (3, 4)

(3, 0) (3, 0) + (4, 3)
(C) = (R112) =

{
(0, 3) (0, 3) + (11, 10)

(3, 0) (3, 0) + (15, 13)

In the subsequent Figure 14, we can observe concretely the effect of Proposition 4.5. The picture
is NOT the affine representation; instead, we place all the vectors v1,v2,x1,x2 at the origin of the
Euclidean plane R2, and we put in evidence the directions to which the vectors are pointing, and
the angles spanned by two of them. This shows explicitly how taking sons corresponds to making
the angle narrower. The roots can “see” more configurations, as they correspond to wider angles.

For the root (R) we can explicitly compute the sequence . . . ,v−1,v0,v1,v2,v3, . . . as in Sec-
tion 3.4. This is infinite in both directions, and it is summarized in the following table:

vector . . . v−2 v−1 v0 v1 v2 v3 v4 v5 . . .
component p = 2 . . . 9 7 5 3 4 9 14 19 . . .
component p = 3 . . . 19 14 9 4 3 5 7 9 . . .
k of the connection . . . k = 2 k = 2 k = 2 k = 3 k = 3 k = 2 k = 2 k = 2 . . .

In the first three rows we can see the list of the vectors, and their respective first components
and second components. In the fourth row, we can see the parameter k ≥ 2 for the connection,
satisfying vi−1 + vi+1 = kvi for i ∈ Z. In order to compute the next term vi+1 in the sequence,
we just choose the minimum value of k ≥ 2 such that the next edge vi+1 satisfies vi+1 ≥ a1 − a2;
and similarly to extend the sequence on the left. The sequence is an arithmetic progression, except
at the (finitely many) singular points where k ̸= 2 (and in fact, the reader can see the arithmetic
progressions 4, 9, 14, 19, . . . and 3, 5, 7, 9, . . . in the table); the limit directions are l− = (2, 5) and
l+ = (5, 2). This is sufficient to describe the isomorphism problem for the given GBS group: the
configurations that can be reached by means of slides, swaps, connections are exactly the iterated
sons of the roots in the sequence above.

We are now interested about all configurations (C) with minimal points a1,a2 and vectors
y1,y2 such that ⟨y1,y2⟩ = ⟨(3, 4), (4, 3)⟩ and y1,y2 is Nielsen equivalent to (3, 4), (4, 3). By
Proposition 4.10 we know that all l ∈ ⟨(3, 4), (4, 3)⟩ which are part of a basis, all of whose compo-
nents are strictly positive, and with at least one component < 3 (because |a1 − a2| = (3, 3)) can
be realized as limit direction of some configuration. The values of l satisfying these conditions are
(7ℓ+6, 1), (14ℓ+5, 2), (2, 14ℓ+5), (1, 7ℓ+6) for ℓ ≥ 0 integer (see Theorem 4.14). In Figure 15 we
can see all of these directions represented in the plane; as long as we stay far away from the axes,
this is a discrete set. Between each consecutive pair of directions, lies exactly one isomorphism
class of GBS groups, corresponding to the gray regions represented in Figure 16. We point out
that each gray region contains most of the configurations in a certain isomorphism class (to be
precise, the full-tree ones) - but a few exceptional ones can fall outside. We also point out that
there are a few isomorphism classes which do not contain any full-tree configuration, and thus are
not represented by any region; these are described in Remark 4.3. We note that a1 − a2 = (3,−3)
belongs to ⟨(3, 4), (4, 3)⟩ but it is not part of a basis; thus in this case no twin roots can appear.
For example, the following sequences of vectors (giving sequences of roots) correspond to different
isomorphism classes of GBS groups.
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vector l− v0 v1 v2 v3 v4 . . . l+

component p = 2 5 4 5 11 17 23 . . . 6
component p = 3 2 3 2 3 4 5 . . . 1

vector l− v0 v1 v2 v3 v4 . . . l+

component p = 2 6 5 6 25 44 63 . . . 19
component p = 3 1 2 1 3 5 7 . . . 2

vector l− v0 v1 v2 v3 v4 . . . l+

component p = 2 19 6 19 32 54 58 . . . 13
component p = 3 2 1 2 3 4 5 . . . 1

vector l− v0 v1 v2 v3 v4 . . . l+

component p = 2 13 6 13 46 79 112 . . . 33
component p = 3 1 1 1 3 5 7 . . . 2
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(Γ,ψ) Λ

Figure 12: The GBS graph (Γ, ψ) of Example 4.18 and the corresponding affine representation Λ.

(C) = (R122)(R)

v2

v1

x1

x2

Figure 13: The root (R) (with vectors v1,v2) for the configuration (C) = (R112) (with vectors
x1,x2) of our initial GBS graph.
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(R) (R) (R1)

(R11) (R112)

v1

v2

x1

x2

v1

v2

x1

x2

v1 + v2

v2

x1

x2

v2

v1 + 2v2 = x1

x2

v1 + 2v2 = x1

v1 + 3v2 = x2

Figure 14: In the picture, we see the vectors v1,v2,x1,x2 inside the Euclidean plane R2. We point
out that this is NOT the affine representation; here we place the initial points of the vectors at the
origin of the Euclidean plane, and we are mainly interested in the directions in which the vectors
point. This should be thought as a graphical representation of the procedure described in the proof
of Proposition 4.5.
In the first image (top left), we see our initial vectors v1,v2 defining a certain angle, and the two
“target vectors” x1,x2 are contained inside this angle. In the second image (top middle), we draw
a parallelogram, whose diagonal corresponds to the vector v1 + v2, which divides the angle into
two parts; the target vectors x1,x2 are contained in one of the two halves. In the third image (top
right), we choose, among the two halves of the angle, the one containing the two target vectors
x1,x2; this means that we have to choose the first son, changing v1 into v1 + v2 and keeping
v2 as it is. The fourth and the fifth image (bottom) show the subsequent iteration of the same
procedure; at each step, the angle becomes narrower, but it keeps containing the two target vectors
x1,x2. At the end of the procedure, we obtain exactly the desired configuration.
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(5, 2)

(6, 1)

(19, 2)

(2, 5)
(1, 6)

(2, 19)

Figure 15: The set of all possible limit directions for the subgroup H = ⟨(4, 3), (3, 4)⟩ as in
Example 4.18. The dots represents all the elements which are part of a basis for H, and which
lie near enough to the two axes - we only consider elements which lie left/below of the line in the
figure. For each dot, we draw the corresponding direction (the dashed lines), which can always be
realized as limit direction of some GBS group. From the picture we can see that the points form a
finite union of arithmetic progressions, accumulating only in the horizontal and vertical directions.
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Figure 16: The limit angles obtained from the limit directions represented in Figure 15. Each
gray region is an isomorphism class of GBS groups. Two consecutive points on the boundary of a
gray region give us one of the roots for the binary trees - consecutive couples of points being roots
related by a connection move.

Example 4.19. Consider the GBS graph (Γ, ψ) with one vertex and two edges, as in Figure 17. We
call Λ its affine representation, given by edges{

a1 a1 + 4z

a2 a2 + 7z

where a1 = (0, 5) and a2 = (3, 0) and z = (2, 1). Note that the subgroup generated by the two
vectors is ⟨4z, 7z⟩ = ⟨z⟩ ∼= Z. It is fairly easy to compute the associated sequence of roots, which
is summarized in the following table:

v−1 v0 v1 v2 v3 v4 v5 . . .
5z 4z 7z 10z 13z 16z 19z . . .

We now consider all the configurations of the form

(C) =

{
a1 a1 + k1z

a2 a2 + k2z

for k1, k2 ≥ 1 integers with (k1, k2) = 1, and we want to divide them into isomorphism classes,
as in Corollary 4.17. The configuration (C) is full-tree if and only if k1 ≥ 2 and k2 ≥ 5. The
configuration (C) is root if and only if k1 ≤ k2 + 1 and k2 ≤ k1 + 4. Thus, if we want to obtain
a sequence of roots infinite on the left, then it eventually be an arithmetic progression of ratio
between −1 and +4 (and with consecutive terms of the progression being coprime).

There is a unique arithmetic progression of ratio −1, giving the sequence of roots

. . . v−2 v−1 v0 v1 v2 v3 v4 v5 . . .

. . . 8z 7z 6z 5z 9z 13z 17z 21z . . .

There is a unique arithmetic progression of ratio +1, giving the sequence of roots
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v−1 v0 v1 v2 v3 v4 v5 . . .
3z 4z 5z 6z 7z 8z 9z . . .

There is a unique arithmetic progression of ratio +2, giving the sequence of roots

v−1 v0 v1 v2 v3 v4 v5 . . .
4z 3z 5z 7z 9z 11z 13z . . .

There are exactly two arithmetic progression of ratio +3, giving the sequences of roots

v−1 v0 v1 v2 v3 v4 v5 . . .
5z 4z 7z 10z 13z 16z 19z . . .

v−1 v0 v1 v2 v3 v4 v5 . . .
3z 2z 5z 8z 11z 14z 17z . . .

There are exactly two arithmetic progression of ratio +4. One of them has the same sequence
of roots as the progression of ratio −1. The other gives the sequence of roots

v−1 v0 v1 v2 v3 v4 v5 . . .
2z 3z 7z 11z 15z 19z 23z . . .

This gives a total of 6 isomorphism classes of GBSs. There are also other isomorphism classes,
but their isomorphism problems do not contain any full-tree configuration (and so are much easier
to describe).
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Figure 17: The GBS graph (Γ, ψ) of Example 4.19 and the corresponding affine representation Λ.
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